Double Emulsion Flow Cytometry for Rapid Single Genome Detection

  • Protocol
  • First Online:
Single-Cell Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2689))

  • 681 Accesses

Abstract

Established techniques in droplet microfluidics have utilized single emulsion (SE) drops to compartmentalize and analyze single cells achieving high-throughput, low input analysis. Building upon this foundation, double emulsion (DE) droplet microfluidics has emerged with distinct advantages in terms of stable compartmentalization, resistance to merging, and most importantly direct compatibility with flow cytometry. In this chapter, we describe a simple-to-fabricate, single-layer DE drop generation device that achieves spatial control over surface wetting with a plasma treatment step. This easy-to-operate device allows for the robust production of single-core DEs with excellent control over the monodispersity. We further explain the use of these DE drops for single-molecule and single-cell assays. Detailed protocols are described to perform single molecule detection using droplet digital PCR in DE drops and automated detection of DE drops on a fluorescence-activated cell sorter (FACS). Due to the wide availability of FACS instruments, DE methods can facilitate the broader adoption of drop-based screening. As the applications of FACS-compatible DE droplets are immensely varied and extend well beyond what can be explored here, this chapter should be seen as an introduction to DE microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agresti JJ, Antipov E, Abate AR et al (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci U S A 107:4004–4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chiu FWY, Stavrakis S (2019) High-throughput droplet-based microfluidics for directed evolution of enzymes. https://onlinelibrary.wiley.com/doi/full/10.1002/elps.201900222

  3. Goto H, Kanai Y, Yotsui A et al (2020) Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of NAD(P)-dependent oxidoreductases. Lab Chip 20:852

    Article  CAS  PubMed  Google Scholar 

  4. Zhang JQ, Chang K-C, Liu L et al (2020) High throughput yeast strain phenoty** with droplet-based RNA sequencing. J Vis Exp:e61014

    Google Scholar 

  5. Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen C, **ng D, Tan L et al (2017) Single-cell whole-genome analyses by linear amplification via transposon insertion (LIANTI). Science (80) 356:189–194

    Article  CAS  Google Scholar 

  7. Stucki A, Vallapurackal J, Ward TR et al (2021) Droplet microfluidics and directed evolution of enzymes: an intertwined journey. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202016154

  8. Lam KS, Lebl M, Krchňák V (1997) The “one-bead-one-compound” combinatorial library method. Chem Rev 97:411–448

    Article  CAS  PubMed  Google Scholar 

  9. Holland-Moritz DA, Wismer MK, Mann BF et al (2020) Mass activated droplet sorting (MADS) enables high-throughput screening of enzymatic reactions at Nanoliter scale. Angew Chemie Int Ed 59:4470–4477

    Article  CAS  Google Scholar 

  10. Payne EM, Holland-Moritz DA, Sun S et al (2020) High-throughput screening by droplet microfluidics: perspective into key challenges and future prospects, vol 20, p 2247

    Google Scholar 

  11. Wagner O, Thiele J, Weinhart M et al (2016) Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants. Lab Chip 16:65–69

    Article  CAS  PubMed  Google Scholar 

  12. Chowdhury MS, Zheng W, Kumari S et al (2019) Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat Commun 10:1–10

    Article  Google Scholar 

  13. Zheng GXY, Terry JM, Belgrader P et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:1–12

    Article  Google Scholar 

  14. Hindson BJ, Ness KD, Masquelier DA et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cowell TW, Dobria A, Han H-S (2022) Simplified, shear induced generation of double emulsions for robust compartmentalization during single genome analysis. ACS Appl Mater Interfaces 14:20528–20537

    Article  CAS  PubMed  Google Scholar 

  16. Lim SW, Abate AR (2013) Ultrahigh-throughput sorting of microfluidic drops with flow cytometry. Lab Chip 13:4563–4572

    Article  CAS  PubMed  Google Scholar 

  17. Sukovich DJ, Lance ST, Abate AR (2017) Sequence specific sorting of DNA molecules with FACS using 3dPCR. Sci Rep 7:39385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brower KK, Carswell-Crumpton C, Klemm S et al (2020) Double emulsion flow cytometry with high-throughput single droplet isolation and nucleic acid recovery. Lab Chip 20:2062–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brower KK, Khariton M, Suzuki PH et al (2020) Double emulsion Picoreactors for high-throughput single-cell encapsulation and phenoty** via FACS. Anal Chem 92:13262–13270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baret J-C, Miller OJ, Taly V et al (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9:1850

    Article  CAS  PubMed  Google Scholar 

  21. Stucki A, Vallapurackal J, Ward TR et al (2021) Droplet microfluidics and directed evolution of enzymes: an intertwined journey. Angew Chemie Int Ed 60:24368–24387

    Article  CAS  Google Scholar 

  22. Mazutis L, Gilbert J, Ung WL et al (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8:870–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abate AR, Hung T, Mary P et al (2010) High-throughput injection with microfluidics using picoinjectors. Proc Natl Acad Sci 107:19163–19166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vembadi A, Menachery A, Qasaimeh MA (2019) Cell cytometry: review and perspective on biotechnological advances. Front Bioeng Biotechnol 7:147

    Article  PubMed  PubMed Central  Google Scholar 

  25. Iskandar SE, Haberman VA, Bowers AA (2020) Expanding the chemical diversity of genetically encoded libraries. ACS Comb Sci 22:713–733

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Sun Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cowell, T., Han, HS. (2023). Double Emulsion Flow Cytometry for Rapid Single Genome Detection. In: Li, P.C., Wu, A.R. (eds) Single-Cell Assays. Methods in Molecular Biology, vol 2689. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3323-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3323-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3322-9

  • Online ISBN: 978-1-0716-3323-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation