A High-Throughput Single-Cell Assay on a Valve-Based Microfluidic Platform Applied to Protein Quantification, Immune Response Monitoring, and Drug Discovery

  • Protocol
  • First Online:
Single-Cell Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2689))

  • 585 Accesses

Abstract

The use of microfluidic technology in single-cell assay has shown potential in biomedical applications like protein quantification, immune response monitoring, and drug discovery. Because of the details of information that can be obtained at single-cell resolution, the single-cell assay has been applied to tackle challenging issues such as cancer treatment. Information like the levels of protein expression, cellular heterogeneity, and unique behaviors within subsets are very important in the biomedical field. For a single-cell assay system, a high-throughput platform that can do on-demand media exchange and real-time monitoring is advantageous in single-cell screening and profiling. In this work, a high-throughput valve-based device is presented, its use in single-cell assay, particularly in protein quantification and surface-marker analysis, and its potential application to immune response monitoring and drug discovery are laid down in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinha N, Subedi N, Tel J (2018) Integrating immunology and microfluidics for single immune cell analysis. Front Immunol 9:1–16

    Article  CAS  Google Scholar 

  2. Kulasinghe A, Wu H, Punyadeera C et al (2018) The use of microfluidic technology for cancer applications and liquid biopsy. Micromachines 9(8):397

    Article  PubMed  PubMed Central  Google Scholar 

  3. Au AK, Lai H, Utela BR et al (2011) Microvalves and micropumps for BioMEMS. Micromachines 2(4):179

    Article  Google Scholar 

  4. Blazek M, Betz C, Hall MN et al (2013) Proximity ligation assay for high-content profiling of cell signaling pathways on a microfluidic chip. Mol Cell Proteomics 12(12):3898–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang Q, Mao S, Khan M et al (2013) Single-cell assay on microfluidic devices. Analyst 144:808–823

    Article  Google Scholar 

  6. Eyer K, Stratz S, Kuhn P et al (2013) Implementing enzyme-linked immunosorbent assays on a microfluidic chip to quantify intracellular molecules in single cells. Anal Chem 85(6):3280–3287

    Article  CAS  PubMed  Google Scholar 

  7. Stratz S, Verboket PE, Hasler K et al (2018) Cultivation and quantitative single-cell analysis of Saccharomyces cerevisiae on a multifunctional microfluidic device. Electrophoresis 39:540–547

    Article  CAS  PubMed  Google Scholar 

  8. Fan H, Wang J, Potanina A et al (2011) Whole-genome molecular haploty** of single cells. Nat Biotechnol 29:51–57

    Article  CAS  PubMed  Google Scholar 

  9. Streets AM, Zhang X, Cao C et al (2014) Microfluidic single-cell whole-transcriptome sequencing. Biol Sci 111(19):7048–7053

    CAS  Google Scholar 

  10. Sun Y, Cai B, Wei X et al (2019) A valve-based microfluidic device for on-chip single cell treatments. Electrophoresis 40(6):961–968

    Article  CAS  PubMed  Google Scholar 

  11. Jahangiri F, Hakala T, Jokinen V (2020) Long-term hydrophilization of polydimethylsiloxane (PDMS) for capillary filling microfluidic chips. Microfluid Nanofluid 24(2)

    Google Scholar 

  12. Lin WC, Mohd Razali NA (2019) Temporary wettability tuning of PCL/PDMS micro pattern using the plasma treatments. Materials 12(4):644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Briones J, Espulgar W, Koyama S et al (2021) A design and optimization of a high throughput valve based microfluidic device for single cell compartmentalization and analysis. Sci Rep 11:12995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quero AJM, Perdigones F, Aracil C (2021) Microfabrication technologies used for creating smart devices for industrial applications. In: Nihtianov S, Luque A (eds) Woodhead publishing series in electronic and optical materials, smart sensors and MEMs, 2nd edn. Woodhead Publishing, Cambridge, pp 291–311

    Google Scholar 

  15. How to make an epoxy SU-8 mold? The SU-8 mold fabrication process: tips and tricks (2021) ElveFlow. http://www.elveflow.com/microfluidic-reviews/soft-lithography-microfabrication/su-8-mold-lithography. Accessed 25 Nov 2021

  16. Lai A, Altemose N, White JA et al (2019) On-ratio PDMS bonding for multilayer microfluidic device fabrication. J Micromech Microeng 29(10):107001

    Article  CAS  Google Scholar 

  17. PDMS BONDING (2021) Harrick Plasma. https://harrickplasma.com/pdms-bonding. Accessed 25 Nov 2021

  18. Tan SH, Nguyen NT, Chua YC et al (2010) Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4(3):32204

    Article  PubMed  Google Scholar 

  19. Hanamsagar R, Reizis T, Chamberlain M et al (2020) An optimized workflow for single-cell transcriptomics and repertoire profiling of purified lymphocytes from clinical samples. Sci Rep 10:2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Agashi K, Chau DY, Shakesheff KM (2009) The effect of delivery via narrow-bore needles on mesenchymal cells. Regen Med 4(1):49–64

    Article  CAS  PubMed  Google Scholar 

  21. Martins CDF, Raposo MMM, Costa SPG (2021) A new fluorogenic substrate for granzyme B based on fluorescence resonance energy transfer. Chem Proc 3(1):6

    Google Scholar 

  22. Briones JC, Espulgar WV, Koyama S et al (2020) A microfluidic platform for single cell fluorometric granzyme B profiling. Theranostics 10(1):123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Tamiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Briones, J.C., Espulgar, W.V., Koyama, S., Takamatsu, H., Saito, M., Tamiya, E. (2023). A High-Throughput Single-Cell Assay on a Valve-Based Microfluidic Platform Applied to Protein Quantification, Immune Response Monitoring, and Drug Discovery. In: Li, P.C., Wu, A.R. (eds) Single-Cell Assays. Methods in Molecular Biology, vol 2689. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3323-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3323-6_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3322-9

  • Online ISBN: 978-1-0716-3323-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation