Recent Advances in Computational Modeling of Multi-targeting Inhibitors as Anti-Alzheimer Agents

  • Protocol
  • First Online:
Computational Modeling of Drugs Against Alzheimer’s Disease

Abstract

Alzheimer’s disease (AD) is a neurodegenerative illness that affects the brain and is linked to cognitive decline, memory problems, and behavioral changes. It is highly prevalent in the elderly, with a constantly growing number of new cases worldwide. In affluent nations with aging populations, AD has been a major source of economic and social problems. As a result, the discovery of novel treatment methods for this disease is now crucial. With advances in research on the pathological mechanisms of AD, many new drug targets have been proposed and focused on in-depth investigations. AD has now been identified as a multifactorial disease. Therefore, the goal of therapeutic drug development has largely been directed at acting on multiple therapeutic targets of the disease at the same time. Computational modeling is a potent and robust method in the discovery and development of pharmacological drugs. Recently, this approach has played an increasingly important role in the search for new medications to treat AD. Computational modeling helps conserve experimental resources and dramatically accelerates advances in drug research. In this chapter, various computational modeling methods utilized in designing multi-targeting inhibitors as anti-Alzheimer agents would be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 234.33
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masters CL, Bateman R, Blennow K et al (2015) Alzheimer’s disease. Nat Rev Dis Primers 1(1):15056

    Article  PubMed  Google Scholar 

  2. Jain P, Jadhav HR (2013) Quantitative structure activity relationship analysis of aminoimidazoles as BACE-I inhibitors. Med Chem Res 22(4):1740–1746

    Article  CAS  Google Scholar 

  3. Richard AA (2019) Risk factors for Alzheimer’s disease. Folia Neuropathol 57(2):87–105

    Article  Google Scholar 

  4. Vogel JW, Iturria-Medina Y, Strandberg OT et al (2020) Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease. Nat Commun 11(1):2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hampel H, Mesulam MM, Cuello AC et al (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141(7):1917–1933

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kinney JW, Bemiller SM, Murtishaw AS et al (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 4(1):575–590

    Article  PubMed  Google Scholar 

  7. Cheng X, Zhang L, Lian Y-J (2015) Molecular targets in Alzheimer’s disease: from pathogenesis to therapeutics. Biomed Res Int 2015:760758

    Article  PubMed  PubMed Central  Google Scholar 

  8. Athar T, Al Balushi K, Khan SA (2021) Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol Biol Rep 48(7):5629–5645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kabir MT, Sufian MA, Uddin MS et al (2019) NMDA receptor antagonists: repositioning of memantine as a multitargeting agent for Alzheimer’s therapy. Curr Pharm Des 25(33):3506–3518

    Article  CAS  PubMed  Google Scholar 

  10. Cummings J, Lee G, Ritter A et al (2020) Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement (N Y) 6(1):e12050

    PubMed  Google Scholar 

  11. Zhang P, Xu S, Zhu Z et al (2019) Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur J Med Chem 176:228–247

    Article  CAS  PubMed  Google Scholar 

  12. Kurz A, Perneczky R (2011) Novel insights for the treatment of Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 35(2):373–379

    Article  CAS  Google Scholar 

  13. Salomone S, Caraci F, Leggio GM et al (2012) New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Br J Clin Pharmacol 73(4):504–517

    Article  CAS  PubMed  Google Scholar 

  14. Hardy J (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110(4):1129–1134

    Article  CAS  PubMed  Google Scholar 

  15. Savage MJ, Gingrich DE (2009) Advances in the development of kinase inhibitor therapeutics for Alzheimer’s disease. Drug Dev Res 70(2):125–144

    Article  CAS  Google Scholar 

  16. Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179(2):312–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stromer T, Serpell LC (2005) Structure and morphology of the Alzheimer’s amyloid fibril. Microsc Res Tech 67(3–4):210–217

    Article  CAS  PubMed  Google Scholar 

  18. Nelson R, Sawaya MR, Balbirnie M et al (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature 435(7043):773–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dislich B, Lichtenthaler SF (2012) The membrane-bound aspartyl protease BACE1: molecular and functional properties in Alzheimer’s disease and beyond. Front Physiol 3:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vassar R, Bennett BD, Babu-Khan S et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science (New York, NY) 286(5440):735–741

    Article  CAS  Google Scholar 

  21. Hong L, Koelsch G, Lin X et al (2000) Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science (New York, NY) 290(5489):150–153

    Article  CAS  Google Scholar 

  22. Xu Y, Li MJ, Greenblatt H et al (2012) Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. Acta Crystallogr D Biol Crystallogr 68(Pt 1):13–25

    Article  CAS  PubMed  Google Scholar 

  23. Kimberly WT, LaVoie MJ, Ostaszewski BL et al (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci U S A 100(11):6382–6387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wolfe MS, **a W, Ostaszewski BL et al (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398(6727):513–517

    Article  CAS  PubMed  Google Scholar 

  25. Thinakaran G, Borchelt DR, Lee MK et al (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17(1):181–190

    Article  CAS  PubMed  Google Scholar 

  26. Takasugi N, Tomita T, Hayashi I et al (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422(6930):438–441

    Article  CAS  PubMed  Google Scholar 

  27. Shah S, Lee SF, Tabuchi K et al (2005) Nicastrin functions as a gamma-secretase-substrate receptor. Cell 122(3):435–447

    Article  CAS  PubMed  Google Scholar 

  28. X-c B, Rajendra E, Yang G et al (2015) Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife 4:e11182

    Article  Google Scholar 

  29. Vyas VK, Ukawala RD, Ghate M et al (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Colletier J-P, Fournier D, Greenblatt HM et al (2006) Structural insights into substrate traffic and inhibition in acetylcholinesterase. EMBO J 25(12):2746–2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Medina M (2018) An overview on the clinical development of tau-based therapeutics. Int J Mol Sci 19(4):1160

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fichou Y, Al-Hilaly YK, Devred F et al (2019) The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol Commun 7(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yoshida H, Goedert M (2012) Phosphorylation of microtubule-associated protein tau by AMPK-related kinases. J Neurochem 120(1):165–176

    Article  CAS  PubMed  Google Scholar 

  34. Cohen TJ, Guo JL, Hurtado DE et al (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252

    Article  PubMed  Google Scholar 

  35. Schedin-Weiss S, Winblad B, Tjernberg LO (2014) The role of protein glycosylation in Alzheimer disease. FEBS J 281(1):46–62

    Article  CAS  PubMed  Google Scholar 

  36. García-Sierra F, Mondragón-Rodríguez S, Basurto-Islas G (2008) Truncation of tau protein and its pathological significance in Alzheimer’s disease. J Alzheimers Dis 14(4):401–409

    Article  PubMed  Google Scholar 

  37. Bretteville A, Ando K, Ghestem A et al (2009) Two-dimensional electrophoresis of tau mutants reveals specific phosphorylation pattern likely linked to early tau conformational changes. PLoS One 4(3):e4843

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mucke L (2009) Alzheimer’s disease. Nature 461(7266):895–897

    Article  CAS  PubMed  Google Scholar 

  39. Liu F, Grundke-Iqbal I, Iqbal K et al (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22(8):1942–1950

    Article  PubMed  Google Scholar 

  40. Zhu Y, Shan X, Yuzwa SA et al (2014) The emerging link between O-GlcNAc and Alzheimer disease. J Biol Chem 289(50):34472–34481

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grinberg LT, Wang X, Wang C et al (2013) Argyrophilic grain disease differs from other tauopathies by lacking tau acetylation. Acta Neuropathol 125(4):581–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cook C, Carlomagno Y, Gendron TF et al (2014) Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum Mol Genet 23(1):104–116

    Article  CAS  PubMed  Google Scholar 

  43. Pan SY, Zhou SF, Gao SH et al (2013) New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid Based Complement Alternat Med 2013:627375

    Article  PubMed  PubMed Central  Google Scholar 

  44. Szymański P, Markowicz M, Mikiciuk-Olasik E (2012) Adaptation of high-throughput screening in drug discovery-toxicological screening tests. Int J Mol Sci 13(1):427–452

    Article  PubMed  Google Scholar 

  45. Clark RL, Johnston BF, Mackay SP et al (2010) The drug discovery portal: a resource to enhance drug discovery from academia. Drug Discov Today 15(15–16):679–683

    Article  PubMed  Google Scholar 

  46. Lahana R (1999) How many leads from HTS? Drug Discov Today 4(10):447–448

    Article  CAS  PubMed  Google Scholar 

  47. Song CM, Lim SJ, Tong JC (2009) Recent advances in computer-aided drug design. Brief Bioinform 10(5):579–591

    Article  CAS  PubMed  Google Scholar 

  48. Veselovsky AV, Zharkova MS, Poroikov VV et al (2014) Computer-aided design and discovery of protein-protein interaction inhibitors as agents for anti-HIV therapy. SAR QSAR Environ Res 25(6):457–471

    Article  CAS  PubMed  Google Scholar 

  49. Pârvu L (2003) QSAR – a piece of drug design. J Cell Mol Med 7(3):333–335

    Article  PubMed  PubMed Central  Google Scholar 

  50. Baig MH, Ahmad K, Roy S et al (2016) Computer aided drug design: success and limitations. Curr Pharm Des 22(5):572–581

    Article  CAS  PubMed  Google Scholar 

  51. Kim KH, Kim ND, Seong BL (2010) Pharmacophore-based virtual screening: a review of recent applications. Expert Opin Drug Discovery 5(3):205–222

    Article  CAS  Google Scholar 

  52. Sousa SF, Cerqueira NM, Fernandes PA et al (2010) Virtual screening in drug design and development. Comb Chem High Throughput Screen 13(5):442–453

    Article  CAS  PubMed  Google Scholar 

  53. Waszkowycz B, Perkins TDJ, Sykes RA et al (2001) Large-scale virtual screening for discovering leads in the postgenomic era. IBM Syst J 40(2):360–376

    Article  Google Scholar 

  54. Lionta E, Spyrou G, Vassilatis DK et al (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14(16):1923–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432(7019):862–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lounnas V, Ritschel T, Kelder J et al (2013) Current progress in structure-based rational drug design marks a new mindset in drug discovery. Comput Struct Biotechnol J 5:e201302011

    Article  PubMed  PubMed Central  Google Scholar 

  57. Anderson AC (2012) Structure-based functional design of drugs: from target to lead compound. Methods Mol Biol 823:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Andricopulo AD, Salum LB, Abraham DJ (2009) Structure-based drug design strategies in medicinal chemistry. Curr Top Med Chem 9(9):771–790

    Article  CAS  PubMed  Google Scholar 

  59. Goh BC, Hadden JA, Bernardi RC et al (2016) Computational methodologies for real-space structural refinement of large macromolecular complexes. Annu Rev Biophys 45:253–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fang Y (2015) Combining label-free cell phenotypic profiling with computational approaches for novel drug discovery. Expert Opin Drug Discovery 10(4):331–343

    Article  CAS  Google Scholar 

  61. Cavasotto CN (2011) Homology models in docking and high-throughput docking. Curr Top Med Chem 11(12):1528–1534

    Article  CAS  PubMed  Google Scholar 

  62. Eldridge MD, Murray CW, Auton TR et al (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11(5):425–445

    Article  CAS  PubMed  Google Scholar 

  63. Dhanavade MJ, Jalkute CB, Barage SH et al (2013) Homology modeling, molecular docking and MD simulation studies to investigate role of cysteine protease from Xanthomonas campestris in degradation of Aβ peptide. Comput Biol Med 43(12):2063–2070

    Article  CAS  PubMed  Google Scholar 

  64. Khare N, Maheshwari SK, Rizvi SMD et al (2022) Homology modelling, molecular docking and molecular dynamics simulation studies of CALMH1 against secondary metabolites of Bauhinia variegata to treat Alzheimer’s disease. Brain Sci 12(6):770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mahendran SR, Jeyabaskar DS, Francis A et al (2017) Homology modeling and in silico docking analysis of BDNF in the treatment of Alzheimer’s disease. Res J Pharm Technol 10:2899–2906

    Article  Google Scholar 

  66. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(1):52–56, 29

    Article  CAS  PubMed  Google Scholar 

  68. Krivov GG, Shapovalov MV, Dunbrack RL Jr (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins Struct Funct Bioinform 77(4):778–795

    Article  CAS  Google Scholar 

  69. Laskowski RA, MacArthur MW, Moss DS et al (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  70. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  71. Sievers F, Higgins DG (2018) Clustal omega for making accurate alignments of many protein sequences. Protein Sci 27(1):135–145

    Article  CAS  PubMed  Google Scholar 

  72. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54:5.6.1–5.6.37

    Article  PubMed  Google Scholar 

  73. Cardozo T, Totrov M, Abagyan R (1995) Homology modeling by the ICM method. Proteins 23(3):403–414

    Article  CAS  PubMed  Google Scholar 

  74. Jacobson MP, Pincus DL, Rapp CS et al (2004) A hierarchical approach to all-atom protein loop prediction. Proteins Struct Funct Bioinform 55(2):351–367

    Article  CAS  Google Scholar 

  75. Molecular Operating Environment (MOE), 2022.02 Chemical Computing Group ULC, 1010 Sherbooke St. West S et al.

    Google Scholar 

  76. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748

    Article  CAS  PubMed  Google Scholar 

  77. Ghouzam Y, Postic G, Guerin PE et al (2016) ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles. Sci Rep 6:28268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405

    Article  CAS  PubMed  Google Scholar 

  80. McGuffin LJ, Adiyaman R, Maghrabi AHA et al (2019) IntFOLD: an integrated web resource for high performance protein structure and function prediction. Nucleic Acids Res 47(W1):W408–W413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):W174–W181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mortuza SM, Zheng W, Zhang C et al (2021) Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions. Nat Commun 12(1):5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Simons KT, Bonneau R, Ruczinski I et al (1999) Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins Suppl 3:171–176

    Article  CAS  PubMed  Google Scholar 

  84. Meng XY, Zhang HX, Mezei M et al (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  PubMed  Google Scholar 

  86. Huang SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11(8):3016–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sousa SF, Ribeiro AJ, Coimbra JT et al (2013) Protein-ligand docking in the new millennium--a retrospective of 10 years in the field. Curr Med Chem 20(18):2296–2314

    Article  CAS  PubMed  Google Scholar 

  88. Mohan V, Gibbs AC, Cummings MD et al (2005) Docking: successes and challenges. Curr Pharm Des 11(3):323–333

    Article  CAS  PubMed  Google Scholar 

  89. Morris GM, Goodsell DS, Huey R et al (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10(4):293–304

    Article  CAS  PubMed  Google Scholar 

  90. Ewing TJ, Makino S, Skillman AG et al (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15(5):411–428

    Article  CAS  PubMed  Google Scholar 

  91. Kramer B, Rarey M, Lengauer T (1999) Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins 37(2):228–241

    Article  CAS  PubMed  Google Scholar 

  92. Venkatachalam CM, Jiang X, Oldfield T et al (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21(4):289–307

    Article  CAS  PubMed  Google Scholar 

  93. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Proteins 52(4):609–623

    Article  CAS  PubMed  Google Scholar 

  94. Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46(4):499–511

    Article  CAS  PubMed  Google Scholar 

  95. Neves MA, Totrov M, Abagyan R (2012) Docking and scoring with ICM: the benchmarking results and strategies for improvement. J Comput Aided Mol Des 26(6):675–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McGann M (2012) FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des 26(8):897–906

    Article  CAS  PubMed  Google Scholar 

  97. Ravitz O, Zsoldos Z, Simon A (2011) Improving molecular docking through eHiTS’ tunable scoring function. J Comput Aided Mol Des 25(11):1033–1051

    Article  CAS  PubMed  Google Scholar 

  98. Du X, Li Y, **a YL et al (2016) Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17(2):144

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking: current status and future challenges. Proteins 65(1):15–26

    Article  CAS  PubMed  Google Scholar 

  100. Ferreira LG, Dos Santos RN, Oliva G et al (2015) Molecular docking and structure-based drug design strategies. Molecules (Basel, Switzerland) 20(7):13384–13421

    Article  CAS  PubMed  Google Scholar 

  101. Foloppe N, Hubbard R (2006) Towards predictive ligand design with free-energy based computational methods? Curr Med Chem 13(29):3583–3608

    Article  CAS  PubMed  Google Scholar 

  102. Jain AN (2006) Scoring functions for protein-ligand docking. Curr Protein Pept Sci 7(5):407–420

    Article  CAS  PubMed  Google Scholar 

  103. Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schreiner W, Karch R, Knapp B et al (2012) Relaxation estimation of RMSD in molecular dynamics immunosimulations. Comput Math Methods Med 2012:173521

    Article  PubMed  PubMed Central  Google Scholar 

  105. Blessy JJ, Sharmila DJ (2015) Molecular modeling of methyl-α-Neu5Ac analogues docked against cholera toxin--a molecular dynamics study. Glycoconj J 32(1–2):49–67

    Article  CAS  PubMed  Google Scholar 

  106. Kieseritzky G, Morra G, Knapp EW (2006) Stability and fluctuations of amide hydrogen bonds in a bacterial cytochrome c: a molecular dynamics study. J Biol Inorg Chem 11(1):26–40

    Article  CAS  PubMed  Google Scholar 

  107. Pacholczyk M, Kimmel M (2011) Exploring the landscape of protein-ligand interaction energy using probabilistic approach. J Comput Biol 18(6):843–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Manly CJ, Chandrasekhar J, Ochterski JW et al (2008) Strategies and tactics for optimizing the Hit-to-Lead process and beyond--a computational chemistry perspective. Drug Discov Today 13(3–4):99–109

    Article  CAS  PubMed  Google Scholar 

  109. Andrade CH, Pasqualoto KF, Ferreira EI et al (2010) 4D-QSAR: perspectives in drug design. Molecules (Basel, Switzerland) 15(5):3281–3294

    Article  CAS  PubMed  Google Scholar 

  110. Myint KZ, **e XQ (2010) Recent advances in fragment-based QSAR and multi-dimensional QSAR methods. Int J Mol Sci 11(10):3846–3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lo Y-C, Rensi SE, Torng W et al (2018) Machine learning in chemoinformatics and drug discovery. Drug Discov Today 23(8):1538–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kaserer T, Beck KR, Akram M et al (2015) Pharmacophore models and pharmacophore-based virtual screening: concepts and applications exemplified on hydroxysteroid dehydrogenases. Molecules (Basel, Switzerland) 20(12):22799–22832

    Article  CAS  PubMed  Google Scholar 

  113. Liao C, Sitzmann M, Pugliese A et al (2011) Software and resources for computational medicinal chemistry. Future Med Chem 3(8):1057–1085

    Article  CAS  PubMed  Google Scholar 

  114. Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96(3):1027–1044

    Article  CAS  PubMed  Google Scholar 

  115. Nicolaou CA, Kannas C, Loizidou E (2012) Multi-objective optimization methods in de novo drug design. Mini Rev Med Chem 12(10):979–987

    Article  CAS  PubMed  Google Scholar 

  116. Chan HH, Leong YQ, Voon SM et al (2021) Effects of amyloid precursor protein overexpression on NF-κB, rho-GTPase and pro-apoptosis Bcl-2 pathways in neuronal cells. Rep Biochem Mol Biol 9(4):417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2):195–203

    Article  CAS  PubMed  Google Scholar 

  118. Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6(1):19–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang TT, Chen Q, Zhou D (2016) Alzheimer’s disease therapeutics: current and future therapies. Minerva Med 107(2):108–113

    CAS  Google Scholar 

  120. De Ferrari GV, Canales MA, Shin I et al (2001) A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 40(35):10447–10457

    Article  PubMed  Google Scholar 

  121. León R, Garcia AG, Marco-Contelles J (2013) Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev 33(1):139–189

    Article  PubMed  Google Scholar 

  122. Piazzi L, Rampa A, Bisi A et al (2003) 3-(4-[[Benzyl(methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation: a dual function lead for Alzheimer’s disease therapy. J Med Chem 46(12):2279–2282

    Article  CAS  PubMed  Google Scholar 

  123. Rosini M, Andrisano V, Bartolini M et al (2005) Rational approach to discover multipotent anti-Alzheimer drugs. J Med Chem 48(2):360–363

    Article  CAS  PubMed  Google Scholar 

  124. Rodríguez-Franco MI, Fernández-Bachiller MI, Pérez C et al (2006) Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J Med Chem 49(2):459–462

    Article  PubMed  Google Scholar 

  125. Marco-Contelles J, Unzeta M, Bolea I et al (2016) ASS234, as a new multi-target directed propargylamine for Alzheimer’s disease therapy. Front Neurosci 10:294

    Article  PubMed  PubMed Central  Google Scholar 

  126. Reddy PH, Tripathi R, Troung Q et al (2012) Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta 1822(5):639–649

    Article  CAS  PubMed  Google Scholar 

  127. Bartolini M, Marco-Contelles J (2019) Tacrines as therapeutic agents for Alzheimer’s disease. IV. The tacripyrines and related annulated tacrines. Chem Rec 19(5):927–937

    Article  CAS  PubMed  Google Scholar 

  128. Li Y, Peng P, Tang L et al (2014) Design, synthesis and evaluation of rivastigmine and curcumin hybrids as site-activated multitarget-directed ligands for Alzheimer’s disease therapy. Bioorg Med Chem 22(17):4717–4725

    Article  CAS  PubMed  Google Scholar 

  129. Scipioni M, Kay G, Megson IL et al (2019) Synthesis of novel vanillin derivatives: novel multi-targeted scaffold ligands against Alzheimer’s disease. Medchemcomm 10(5):764–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Umar T, Shalini S, Raza MK et al (2018) New amyloid beta-disaggregating agents: synthesis, pharmacological evaluation, crystal structure and molecular docking of N-(4-((7-chloroquinolin-4-yl)oxy)-3-ethoxybenzyl)amines. Medchemcomm 9(11):1891–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fu H, Li W, Luo J et al (2008) Promising anti-Alzheimer’s dimer bis(7)-tacrine reduces beta-amyloid generation by directly inhibiting BACE-1 activity. Biochem Biophys Res Commun 366(3):631–636

    Article  CAS  PubMed  Google Scholar 

  132. Piazzi L, Cavalli A, Colizzi F et al (2008) Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg Med Chem Lett 18(1):423–426

    Article  CAS  PubMed  Google Scholar 

  133. Zhu Y, **ao K, Ma L et al (2009) Design, synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and beta-secretase. Bioorg Med Chem 17(4):1600–1613

    Article  CAS  PubMed  Google Scholar 

  134. Huang W, Tang L, Shi Y et al (2011) Searching for the multi-target-directed ligands against Alzheimer’s disease: discovery of quinoxaline-based hybrid compounds with AChE, H3R and BACE 1 inhibitory activities. Bioorg Med Chem 19(23):7158–7167

    Article  CAS  PubMed  Google Scholar 

  135. Cavalli A, Bolognesi ML, Capsoni S et al (2007) A small molecule targeting the multifactorial nature of Alzheimer’s disease. Angew Chem Int Ed Engl 46(20):3689–3692

    Article  CAS  PubMed  Google Scholar 

  136. Huang W, Lv D, Yu H et al (2010) Dual-target-directed 1,3-diphenylurea derivatives: BACE 1 inhibitor and metal chelator against Alzheimer’s disease. Bioorg Med Chem 18(15):5610–5615

    Article  CAS  PubMed  Google Scholar 

  137. Prati F, De Simone A, Armirotti A et al (2015) 3,4-Dihydro-1,3,5-triazin-2(1H)-ones as the first dual BACE-1/GSK-3β fragment hits against Alzheimer’s disease. ACS Chem Neurosci 6(10):1665–1682

    Article  CAS  PubMed  Google Scholar 

  138. Murata K, Matsumura S, Yoshioka Y et al (2015) Screening of β-secretase and acetylcholinesterase inhibitors from plant resources. J Nat Med 69(1):123–129

    Article  CAS  PubMed  Google Scholar 

  139. Di Martino RMC, De Simone A, Andrisano V et al (2016) Versatility of the curcumin scaffold: discovery of potent and balanced dual BACE-1 and GSK-3β inhibitors. J Med Chem 59(2):531–544

    Article  PubMed  Google Scholar 

  140. Yan J, Hu J, Liu A et al (2017) Design, synthesis, and evaluation of multitarget-directed ligands against Alzheimer’s disease based on the fusion of donepezil and curcumin. Bioorg Med Chem 25(12):2946–2955

    Article  CAS  PubMed  Google Scholar 

  141. Sang Z-p, Qiang X-m, Li Y et al (2015) Design, synthesis, and biological evaluation of scutellarein carbamate derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Chem Biol Drug Des 86(5):1168–1177

    Article  CAS  PubMed  Google Scholar 

  142. Singh M, Silakari O (2016) Design, synthesis and biological evaluation of novel 2-phenyl-1-benzopyran-4-one derivatives as potential poly-functional anti-Alzheimer’s agents. RSC Adv 6(110):108411–108422

    Article  CAS  Google Scholar 

  143. Xu QX, Hu Y, Li GY et al (2018) Multi-target anti-Alzheimer activities of four prenylated compounds from Psoralea fructus. Molecules (Basel, Switzerland) 23(3):614

    Article  PubMed  Google Scholar 

  144. Chakraborty S, Basu S (2017) Multi-functional activities of citrus flavonoid narirutin in Alzheimer’s disease therapeutics: an integrated screening approach and in vitro validation. Int J Biol Macromol 103:733–743

    Article  CAS  PubMed  Google Scholar 

  145. Ahmad A, Ali T, Park HY et al (2017) Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol Neurobiol 54(3):2269–2285

    Article  CAS  PubMed  Google Scholar 

  146. Liang Z, Zhang B, Su WW et al (2016) C-glycosylflavones alleviate tau phosphorylation and amyloid neurotoxicity through GSK3β inhibition. ACS Chem Neurosci 7(7):912–923

    Article  CAS  PubMed  Google Scholar 

  147. Kim H, Park B-S, Lee K-G et al (2005) Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid. J Agric Food Chem 53(22):8537–8541

    Article  CAS  PubMed  Google Scholar 

  148. Porat Y, Abramowitz A, Gazit E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67(1):27–37

    Article  CAS  PubMed  Google Scholar 

  149. Pavadai P, Swaminathan S (2015) Design and insilico molecular prediction of flavone-fusedthiazole analogues as Acetyl Cholinesterase and β-Secretase inhibitor in the treatment of Alzheimer’s disease. Int J Pharmtech Res 7:125–131

    Google Scholar 

  150. Wang SN, Li Q, **g MH et al (2016) Natural xanthones from Garcinia mangostana with multifunctional activities for the therapy of Alzheimer’s disease. Neurochem Res 41(7):1806–1817

    Article  CAS  PubMed  Google Scholar 

  151. Fernández-Bachiller MI, Pérez C, Monjas L et al (2012) New tacrine-4-Oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J Med Chem 55(3):1303–1317

    Article  PubMed  Google Scholar 

  152. Kumar V, Saha A, Roy K (2020) In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease. Comput Biol Chem 88:107355

    Article  CAS  PubMed  Google Scholar 

  153. Stern N, Gacs A, Tátrai E et al (2022) Dual inhibitors of AChE and BACE-1 for reducing Aβ in Alzheimer’s disease: from in Silico to in vivo. Int J Mol Sci 23(21):13098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Khan BA, Hamdani SS, Alsfouk BA et al (2023) Synthesis, biological evaluation and computational investigations of S-benzyl dithiocarbamates as the cholinesterase and monoamine oxidase inhibitors. J Mol Struct 1271:134138

    Article  CAS  Google Scholar 

  155. Gujral SS, Shakeri A, Hejazi L et al (2022) Design, synthesis and structure-activity relationship studies of 3-phenylpyrazino[1,2-a]indol-1(2H)-ones as amyloid aggregation and cholinesterase inhibitors with antioxidant activity. Eur J Med Chem Rep 6:100075

    CAS  Google Scholar 

  156. Dhamodharan G, Mohan CG (2022) Machine learning models for predicting the activity of AChE and BACE1 dual inhibitors for the treatment of Alzheimer’s disease. Mol Divers 26(3):1501–1517

    Article  CAS  PubMed  Google Scholar 

  157. Shrivastava SK, Nivrutti AA, Bhardwaj B et al (2022) Drug reposition-based design, synthesis, and biological evaluation of dual inhibitors of acetylcholinesterase and β-Secretase for treatment of Alzheimer’s disease. J Mol Struct 1262:132979

    Article  CAS  Google Scholar 

  158. Zeng H, Wu X (2016) Alzheimer’s disease drug development based on Computer-Aided Drug Design. Eur J Med Chem 121:851–863

    Article  CAS  PubMed  Google Scholar 

  159. Kumar A, Srivastava S, Tripathi S et al (2016) Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4’ benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations. J Biomol Struct Dyn 34(6):1252–1263

    Article  CAS  PubMed  Google Scholar 

  160. Verma A, Kumar A, Debnath M (2016) Molecular docking and simulation studies to give insight of surfactin amyloid interaction for destabilizing Alzheimer’s Aβ42 protofibrils. Med Chem Res 25(8):1616–1622

    Article  CAS  Google Scholar 

  161. Singh SK, Sinha P, Mishra L et al (2013) Neuroprotective role of a novel copper chelator against Aβ 42 induced neurotoxicity. Int J Alzheimers Dis 2013:567128

    PubMed  PubMed Central  Google Scholar 

  162. Kumar A, Roy S, Tripathi S et al (2016) Molecular docking based virtual screening of natural compounds as potential BACE1 inhibitors: 3D QSAR pharmacophore map** and molecular dynamics analysis. J Biomol Struct Dyn 34(2):239–249

    Article  CAS  PubMed  Google Scholar 

  163. Roy S, Kumar A, Baig MH et al (2015) Virtual screening, ADMET profiling, molecular docking and dynamics approaches to search for potent selective natural molecules based inhibitors against metallothionein-III to study Alzheimer’s disease. Methods 83:105–110

    Article  CAS  PubMed  Google Scholar 

  164. Iqbal K, Grundke-Iqbal I (2010) Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement 6(5):420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Arooj M, Sakkiah S, Cao G et al (2013) An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes. PLoS One 8(4):e60470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cosconati S, Forli S, Perryman AL et al (2010) Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discovery 5(6):597–607

    Article  CAS  Google Scholar 

  167. Kumar A, Sharma A (2018) Computational modeling of multi-target-directed inhibitors against Alzheimer’s disease. In: Roy K (ed) Computational modeling of drugs against Alzheimer’s disease. Springer, New York, pp 533–571. https://doi.org/10.1007/978-1-4939-7404-7_19

    Chapter  Google Scholar 

  168. Cole JC, Murray CW, Nissink JW et al (2005) Comparing protein-ligand docking programs is difficult. Proteins 60(3):325–332

    Article  CAS  PubMed  Google Scholar 

  169. Hevener KE, Zhao W, Ball DM et al (2009) Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model 49(2):444–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Triballeau N, Acher F, Brabet I et al (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 48(7):2534–2547

    Article  CAS  PubMed  Google Scholar 

  171. Rarey M, Kramer B, Lengauer T et al (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3):470–489

    Article  CAS  PubMed  Google Scholar 

  172. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245(1):43–53

    Article  CAS  PubMed  Google Scholar 

  173. Baxter CA, Murray CW, Clark DE et al (1998) Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins 33(3):367–382

    Article  CAS  PubMed  Google Scholar 

  174. Hall SB, Venkitaraman AR, Whitsett JA et al (1992) Importance of hydrophobic apoproteins as constituents of clinical exogenous surfactants. Am Rev Respir Dis 145(1):24–30

    Article  CAS  PubMed  Google Scholar 

  175. Goto J, Kataoka R, Hirayama N (2004) Ph4Dock: pharmacophore-based protein-ligand docking. J Med Chem 47(27):6804–6811

    Article  CAS  PubMed  Google Scholar 

  176. Baroni M, Cruciani G, Sciabola S et al (2007) A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application. J Chem Inf Model 47(2):279–294

    Article  CAS  PubMed  Google Scholar 

  177. Park K, Kim D (2006) A method to detect important residues using protein binding site comparison. Genome Inform 17(2):216–225

    CAS  PubMed  Google Scholar 

  178. Case DA, Cheatham TE 3rd, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Congreve M, Chessari G, Tisi D et al (2008) Recent developments in fragment-based drug discovery. J Med Chem 51(13):3661–3680

    Article  CAS  PubMed  Google Scholar 

  180. Jorgensen W, Maxwell D, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  181. Verkhivker GM (2004) Computational analysis of ligand binding dynamics at the intermolecular hot spots with the aid of simulated tempering and binding free energy calculations. J Mol Graph Model 22(5):335–348

    Article  CAS  PubMed  Google Scholar 

  182. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16(1):11–26

    Article  CAS  PubMed  Google Scholar 

  183. Muegge I (2006) PMF scoring revisited. J Med Chem 49(20):5895–5902

    Article  CAS  PubMed  Google Scholar 

  184. Velec HF, Gohlke H, Klebe G (2005) DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J Med Chem 48(20):6296–6303

    Article  CAS  PubMed  Google Scholar 

  185. Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8(3):243–256

    Article  PubMed  Google Scholar 

  186. Ballesteros JA, Weinstein H (1995) [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In: Sealfon SC (ed) Methods in neurosciences, vol 25. Academic Press, pp 366–428. https://doi.org/10.1016/S1043-9471(05)80049-7

    Chapter  Google Scholar 

  187. Garman E, Laver G (2004) Controlling influenza by inhibiting the virus’s neuraminidase. Curr Drug Targets 5(2):119–136

    Article  CAS  PubMed  Google Scholar 

  188. Kaldor SW, Kalish VJ, Davies JF 2nd et al (1997) Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 40(24):3979–3985

    Article  CAS  PubMed  Google Scholar 

  189. von Itzstein M, Wu WY, Kok GB et al (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363(6428):418–423

    Article  Google Scholar 

  190. Chen H, Lyne PD, Giordanetto F et al (2006) On evaluating molecular-docking methods for pose prediction and enrichment factors. J Chem Inf Model 46(1):401–415

    Article  CAS  PubMed  Google Scholar 

  191. Warren GL, Andrews CW, Capelli AM et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931

    Article  CAS  PubMed  Google Scholar 

  192. Huang JW, Zhang Z, Wu B et al (2008) Fragment-based design of small molecule X-linked inhibitor of apoptosis protein inhibitors. J Med Chem 51(22):7111–7118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Murray CW, Callaghan O, Chessari G et al (2007) Application of fragment screening by X-ray crystallography to beta-secretase. J Med Chem 50(6):1116–1123

    Article  CAS  PubMed  Google Scholar 

  194. Fink T, Bruggesser H, Reymond JL (2005) Virtual exploration of the small-molecule chemical universe below 160 Daltons. Angew Chem Int Ed Engl 44(10):1504–1508

    Article  CAS  PubMed  Google Scholar 

  195. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16(1):3–50

    Article  CAS  PubMed  Google Scholar 

  196. Huey R, Morris GM, Olson AJ et al (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28(6):1145–1152

    Article  CAS  PubMed  Google Scholar 

  197. **e H, Wen H, Zhang D et al (2017) Designing of dual inhibitors for GSK-3β and CDK5: virtual screening and in vitro biological activities study. Oncotarget 8(11):18118–18128

    Article  PubMed  PubMed Central  Google Scholar 

  198. Tran T-S, Le M-T, Tran T-D et al (2020) Design of curcumin and flavonoid derivatives with acetylcholinesterase and beta-secretase inhibitory activities using in silico approaches. Molecules (Basel, Switzerland) 25(16):3644

    Article  CAS  PubMed  Google Scholar 

  199. Duan S, Guan X, Lin R et al (2015) Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer’s disease. Neurobiol Aging 36(5):1792–1807

    Article  CAS  PubMed  Google Scholar 

  200. Yang SY (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15(11–12):444–450

    Article  CAS  PubMed  Google Scholar 

  201. Sliwoski G, Kothiwale S, Meiler J et al (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395

    Article  PubMed  PubMed Central  Google Scholar 

  202. Caporuscio F, Tafi A (2011) Pharmacophore modelling: a forty year old approach and its modern synergies. Curr Med Chem 18(17):2543–2553

    Article  CAS  PubMed  Google Scholar 

  203. Fei J, Zhou L, Liu T et al (2013) Pharmacophore modeling, virtual screening, and molecular docking studies for discovery of novel Akt2 inhibitors. Int J Med Sci 10(3):265–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Goyal M, Dhanjal JK, Goyal S et al (2014) Development of dual inhibitors against Alzheimer’s disease using fragment-based QSAR and molecular docking. Biomed Res Int 2014:979606

    Article  PubMed  PubMed Central  Google Scholar 

  205. Tetko IV, Gasteiger J, Todeschini R et al (2005) Virtual computational chemistry laboratory--design and description. J Comput Aided Mol Des 19(6):453–463

    Article  CAS  PubMed  Google Scholar 

  206. MOE. 2008.10 edition. Chemical Computing Group Inc. SSW, Suite 910, Montreal, Quebec, Canada H3A 2R7. https://www.chemcomp.com/. Accessed 20 May 2021

  207. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105

    Google Scholar 

  208. Ngo T-D, Tran T-D, Le M-T et al (2016) Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds. Mol Divers 20(4):945–961

    Article  CAS  PubMed  Google Scholar 

  209. Consonni V, Ballabio D, Todeschini R (2009) Comments on the definition of the Q2 parameter for QSAR validation. J Chem Inf Model 49(7):1669–1678

    Article  CAS  PubMed  Google Scholar 

  210. Todeschini R, Ballabio D, Grisoni F (2016) Beware of unreliable Q(2)! A comparative study of regression metrics for predictivity assessment of QSAR models. J Chem Inf Model 56(10):1905–1913

    Article  CAS  PubMed  Google Scholar 

  211. Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51(9):2320–2335

    Article  CAS  PubMed  Google Scholar 

  212. Thai K-M, Bui Q-H, Tran T-D et al (2012) QSAR modeling on benzo[c]phenanthridine analogues as topoisomerase I inhibitors and anti-cancer agents. Molecules (Basel, Switzerland) 17(5):5690–5712

    Article  CAS  PubMed  Google Scholar 

  213. Youdim MB, Buccafusco JJ (2005) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26(1):27–35

    Article  CAS  PubMed  Google Scholar 

  214. McGaughey GB, Colussi D, Graham SL et al (2007) Beta-secretase (BACE-1) inhibitors: accounting for 10s loop flexibility using rigid active sites. Bioorg Med Chem Lett 17(4):1117–1121

    Article  CAS  PubMed  Google Scholar 

  215. Kumalo HM, Bhakat S, Soliman ME (2016) Investigation of flap flexibility of β-secretase using molecular dynamic simulations. J Biomol Struct Dyn 34(5):1008–1019

    Article  CAS  PubMed  Google Scholar 

  216. Berhanu WM, Masunov AE (2015) Atomistic mechanism of polyphenol amyloid aggregation inhibitors: molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer. J Biomol Struct Dyn 33(7):1399–1411

    Article  CAS  PubMed  Google Scholar 

  217. Ma XH, Shi Z, Tan C et al (2010) In-silico approaches to multi-target drug discovery: computer aided multi-target drug design, multi-target virtual screening. Pharm Res 27(5):739–749

    Article  CAS  PubMed  Google Scholar 

  218. González-Díaz H, Prado-Prado FJ, Santana L et al (2006) Unify QSAR approach to antimicrobials. Part 1: predicting antifungal activity against different species. Bioorg Med Chem 14(17):5973–5980

    Article  PubMed  Google Scholar 

  219. Ambure P, Roy K (2014) Advances in quantitative structure-activity relationship models of anti-Alzheimer’s agents. Expert Opin Drug Discovery 9(6):697–723

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by University of Medicine and Pharmacy at Ho Chi Minh city (Grant number: 224/2022/H-HYD to Khac-Minh Thai) and Hue University (Grant number: DHH2022-04-166 to Thai-Son Tran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khac-Minh Thai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thai, KM. et al. (2023). Recent Advances in Computational Modeling of Multi-targeting Inhibitors as Anti-Alzheimer Agents. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer’s Disease. Neuromethods, vol 203. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3311-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3311-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3310-6

  • Online ISBN: 978-1-0716-3311-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation