Computational Modeling of Kinase Inhibitors as Anti-Alzheimer Agents

  • Protocol
  • First Online:
Computational Modeling of Drugs Against Alzheimer’s Disease

Part of the book series: Neuromethods ((NM,volume 203))

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease distinguished by memory loss, cognitive dysfunction, impaired functional abilities, and behavioral changes. Being the most common form of senile dementia, AD can be characterized by the presence of two types of neuropathological hallmarks: neurofibrillary tangles (NFTs) and senile plaques (SP). The phosphorylation of tau is controlled and regulated by a group of kinase and phosphatase enzymes, making their systemic balance to be an important issue. Disruption of this equilibrium leads to tau hyperphosphorylation followed by tau aggregation. Inhibition of specific tau kinases, therefore, is a potential strategy to reverse tau pathology. However, new drug discovery comes with its own challenges involving high cost of experimentation, resources, and manpower. Thus, to combat these drawbacks, computational methods like pharmacophore modeling, molecular docking, molecular dynamic (MD) simulation, binding energy analysis, and QSAR are used for screening and prediction of new targets. Besides these, such techniques allow the application of available structural information for generating novel molecules contributing to the rational design of inhibitors. In the present book chapter, we have extensively reviewed different tau kinases, their systemic roles, and mechanism of tau phosphorylation relevant to cause AD. Also, the chapter encompasses different computational studies carried out in the last 4 years on various protein kinases in search of potential anti-Alzheimer’s agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiang K, Koo EH (2014) Emerging therapeutics for Alzheimer’s disease. Annu Rev Pharmacol Toxicol 54:381–405

    Article  CAS  PubMed  Google Scholar 

  2. Dementia F sheet on (2003) Face sheet on Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed on 08.01.2023

  3. Lynch C (2020) World Alzheimer report 2019: attitudes to dementia, a global survey. Alzheimers Dement 16:e038255

    Article  Google Scholar 

  4. Zeisel J, Bennett K, Fleming R (2020) World Alzheimer Report 2020: design, dignity, dementia: dementia-related design and the built environment. Alzheimer’s Dis Int 2

    Google Scholar 

  5. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science (80- ) 297:353–356

    Article  CAS  Google Scholar 

  7. Bellenguez C, Grenier-Boley B, Lambert JC (2020) Genetics of Alzheimer’s disease: where we are, and where we are going. Curr Opin Neurobiol 61:40–48

    Article  CAS  PubMed  Google Scholar 

  8. Folch J, Petrov D, Ettcheto M et al (2016) Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast 2016:8501693

    Article  PubMed  PubMed Central  Google Scholar 

  9. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270

    Article  PubMed  PubMed Central  Google Scholar 

  10. West S, Bhugra P (2015) Emerging drug targets for Aβ and tau in Alzheimer’s disease: a systematic review. Br J Clin Pharmacol 80:221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aricept (2015) (donepezil hydrochloride). Full prescribing information. Eisai Inc., Woodcliff Lake

    Google Scholar 

  12. Exelon (2015) (rivastigmine tartrate). Full Prescribing Information. Novartis Pharmaceuticals Corporation, East Hanover

    Google Scholar 

  13. Exelon Patch (2016) (rivastigmine transdermal system). Full prescribing information. Novartis Pharmaceuticals Corporation, East Hanover

    Google Scholar 

  14. Razadyne (2016) (galantamine hydrobromide). Full prescribing information. Janssen Pharmaceuticals Inc., Titusville

    Google Scholar 

  15. Namenda XR (2014) (memantine hydrochloride). Full prescribing information. Forest Pharmaceuticals Inc., St. Louis

    Google Scholar 

  16. Mitra A, Dey B (2013) Therapeutic interventions in Alzheimer’s disease. In: Uday K (ed) Neurodegenerative diseases. Rijeka, Croatia, pp 291–317

    Google Scholar 

  17. Martin L, Latypova X, Wilson CM et al (2013) Tau protein kinases: Involvement in Alzheimer’s disease. Ageing Res Rev 12:289–309

    Article  CAS  PubMed  Google Scholar 

  18. Alam J, Sharma L (2018) Potential enzymatic targets in Alzheimer’s: a comprehensive review. Curr Drug Targets 20:316–339

    Article  Google Scholar 

  19. Turab Naqvi AA, Hasan GM, Hassan MI (2020) Targeting tau hyperphosphorylation via kinase inhibition: strategy to address Alzheimer’s disease. Curr Top Med Chem 20:1059–1073

    Article  PubMed  Google Scholar 

  20. Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247

    Article  CAS  PubMed  Google Scholar 

  21. Das BC, Sribidya P, Devi PO et al (2018) The role of tau protein in diseases. Ann Adv Chem 2:001–016

    CAS  Google Scholar 

  22. Kampers T, Pangalos M, Geerts H et al (1999) Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer’s disease. FEBS Lett 451:39–44

    Article  CAS  PubMed  Google Scholar 

  23. Chen Q, Yoshida H, Schubert D et al (2001) Presenilin binding protein is associated with neurofibrillary alterations in Alzheimer’s disease and stimulates tau phosphorylation. Am J Pathol 159:1597–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dustin P (2012) Microtubules. Springer Science & Business Media

    Google Scholar 

  25. Ballatore C, Lee VMY, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672

    Article  CAS  PubMed  Google Scholar 

  26. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378

    Article  CAS  PubMed  Google Scholar 

  27. Iqbal K, Liu F, Gong C (2017) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12:15–27

    Article  Google Scholar 

  28. Iqbal K, Gong C-X, Liu F, Novak M (2013) Hyperphosphorylation-induced tau oligomers. Front Neurol 4:112

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mcgregor G, Harvey J, Mainardi M et al (2018) Regulation of hippocampal synaptic function by the metabolic hormone, leptin: implications for health and neurodegenerative disease. Front Cell Neurosci 12:340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sergeant N, Delacourte A, Buée L (2005) Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta Mol basis Dis 1739:179–197

    Article  CAS  Google Scholar 

  31. Chun W, Johnson GV (2007) The role of tau phosphorylation and cleavage in neuronal cell death. Front Biosci 12:733–756

    Article  CAS  PubMed  Google Scholar 

  32. Cai Z, Zhao Y, Zhao B (2012) Roles of glycogen synthase kinase 3 in Alzheimer’s disease. Curr Alzheimer Res 9:864–879

    Article  CAS  PubMed  Google Scholar 

  33. Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  CAS  PubMed  Google Scholar 

  34. Doble BW, Patel S, Wood GA et al (2007) Functional redundancy of GSK-3α and GSK-3β in Wnt/β-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell 12:957–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ly PTT, Wu Y, Zou H et al (2013) Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 123:224–235

    Article  CAS  PubMed  Google Scholar 

  36. Phiel CJ, Wilson CA, Lee VMY, Klein PS (2003) GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 423:435–439

    Article  CAS  PubMed  Google Scholar 

  37. Cole A, Frame S, Cohen P (2004) Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem J 377:249–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Avila J, Santa-María I, Pérez M et al (2006) Tau phosphorylation, aggregation, and cell toxicity. J Biomed Biotechnol 2006

    Google Scholar 

  39. Muyllaert D, Kremer A, Jaworski T et al (2008) Glycogen synthase kinase-3β, or a link between amyloid and tau pathology? Genes Brain Behav 7:57–66

    Article  CAS  PubMed  Google Scholar 

  40. Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140:3079–3093

    Article  CAS  PubMed  Google Scholar 

  41. Liu S-L, Wang C, Jiang T et al (2016) The role of Cdk5 in Alzheimer’s disease. Mol Neurobiol 53:4328–4342

    Article  CAS  PubMed  Google Scholar 

  42. Asada A, Saito T, Hisanaga S-I (2012) Phosphorylation of p35 and p39 by Cdk5 determines the subcellular location of the holokinase in a phosphorylation-site-specific manner. J Cell Sci 125:3421–3429

    CAS  PubMed  Google Scholar 

  43. Cruz JC, Tseng HC, Goldman JA et al (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471–483

    Article  CAS  PubMed  Google Scholar 

  44. Noble W, Olm V, Takata K et al (2003) Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38:555–565

    Article  CAS  PubMed  Google Scholar 

  45. Zhu X, Lee HG, Raina AK et al (2002) The role of mitogen-activated protein kinase pathways in Alzheimer’s disease. Neurosignals 11:270–281

    Article  CAS  PubMed  Google Scholar 

  46. Guo Y, Pan W, Liu S et al (2020) ERK/MAPK signalling pathway and tumorigenesis (review). Exp Ther Med 19:1997–2007

    PubMed  PubMed Central  Google Scholar 

  47. Dalrymple SA (2002) p38 mitogen activated protein kinase as a therapeutic target for Alzheimer’s disease. J Mol Neurosci 19:295–299

    Article  CAS  PubMed  Google Scholar 

  48. Chen YR, Tan TH (2000) The c-Jun N-terminal kinase pathway and apoptotic signaling (review). Int J Oncol 16:651–662

    CAS  PubMed  Google Scholar 

  49. Mielke K, Herdegen T (2000) JNK and p38 stresskinases — degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol 61:45–60

    Article  CAS  PubMed  Google Scholar 

  50. Reynolds CH, Utton MA, Gibb GM et al (1997) Stress-activated protein kinase/c-Jun N-terminal kinase phosphorylates τ protein. J Neurochem 68:1736–1744

    Article  CAS  PubMed  Google Scholar 

  51. Thakur A, Wang X, Siedlak SL et al (2007) c-Jun phosphorylation in Alzheimer disease. J Neurosci Res 85:1668–1673

    Article  CAS  PubMed  Google Scholar 

  52. Varjosalo M, Björklund M, Cheng F et al (2008) Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell 133:537–548

    Article  CAS  PubMed  Google Scholar 

  53. Becker W, Weber Y, Wetzel K et al (1998) Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases*. J Biol Chem 273:25893–25902

    Article  CAS  PubMed  Google Scholar 

  54. Becker W, Joost HG (1998) Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Prog Nucleic Acid Res Mol Biol 62:1–17

    Article  Google Scholar 

  55. Kentrup H, Becker W, Heukelbach J et al (1996) Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J Biol Chem 271:3488–3495

    Article  CAS  PubMed  Google Scholar 

  56. Kumar K, Man-Un Ung P, Wang P et al (2018) Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic b-cell proliferation activity. Eur J Med Chem 157:1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Himpel S, Panzer P, Eirmbter K et al (2001) Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. Biochem J 359:497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gross SD, Anderson RA (1998) Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal 10:699–711

    Article  CAS  PubMed  Google Scholar 

  59. Li G, Yin H, Kuret J (2004) Casein kinase 1 delta phosphorylates tau and disrupts its binding to microtubules. J Biol Chem 279:15938–15945

    Article  CAS  PubMed  Google Scholar 

  60. Knippschild U, Gocht A, Wolff S et al (2005) The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 17:675–689

    Article  CAS  PubMed  Google Scholar 

  61. Ahmad KA, Wang G, Unger G et al (2008) Protein kinase CK2 – a key suppressor of apoptosis. Adv Enzym Regul 48:179–187

    Article  CAS  Google Scholar 

  62. Ghoshal N, Smiley JF, DeMaggio AJ et al (1999) A new molecular link between the fibrillar and granulovacuolar lesions of Alzheimer’s disease. Am J Pathol 155:1163–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen C, Gu J, Basurto-Islas G et al (2017) Up-regulation of casein kinase 1ε is involved in tau pathogenesis in Alzheimer’s disease. Sci Rep 71(7):1–15

    Google Scholar 

  64. Pierrot N, Ferrao Santos S, Feyt C et al (2006) Calcium-mediated transient phosphorylation of tau and amyloid precursor protein followed by intraneuronal amyloid-β accumulation*. J Biol Chem 281:39907–39914

    Article  CAS  PubMed  Google Scholar 

  65. Oka M, Fujisaki N, Maruko-Otake A et al (2017) Ca2+/calmodulin-dependent protein kinase II promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy. J Biochem 162:335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Griffith LC (2004) Regulation of calcium/calmodulin-dependent protein kinase II activation by intramolecular and intermolecular interactions. J Neurosci 24:8394–8398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang JH, Kelly PT (1995) Postsynaptic injection of Ca2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity. Neuron 15:443–452

    Article  PubMed  Google Scholar 

  68. Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  CAS  PubMed  Google Scholar 

  69. Lucchesi W, Mizuno K, Giese KP (2011) Novel insights into CaMKII function and regulation during memory formation. Brain Res Bull 85:2–8

    Article  CAS  PubMed  Google Scholar 

  70. Liang Z, Liu F, Grundke-Iqbal I et al (2007) Down-regulation of cAMP-dependent protein kinase by over-activated calpain in Alzheimer disease brain. J Neurochem 103:2462–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shi J, Qian W, Yin X et al (2011) Cyclic AMP-dependent protein kinase regulates the alternative splicing of tau exon 10: a mechanism involved in tau pathology of Alzheimer disease. J Biol Chem 286:14639–14648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Amini E, Nassireslami E, Payandemehr B et al (2015) Paradoxical role of PKA inhibitor on amyloidβ-induced memory deficit. Physiol Behav 149:76–85

    Article  CAS  PubMed  Google Scholar 

  73. Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119

    Article  CAS  PubMed  Google Scholar 

  74. Macalino SJY, Gosu V, Hong S, Choi S (2015) Role of computer-aided drug design in modern drug discovery. Arch Pharmacal Res 389(38):1686–1701

    Article  Google Scholar 

  75. Morris GM, Lim-Wilby M (2008) Molecular docking. In: Methods in molecular biology. Humana Press, pp 365–382

    Google Scholar 

  76. Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99:1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang SY (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450

    Article  CAS  PubMed  Google Scholar 

  78. Roy K (2017) Advances in QSAR modeling. In: Applications in pharmaceutical, chemical, food, agricultural and environmental sciences. Springer, Cham

    Google Scholar 

  79. Vamathevan J, Clark D, Czodrowski P et al (2019) Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 18:463–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iwaloye O, Elekofehinti OO, Oluwarotimi EA et al (2020) Insight into glycogen synthase kinase-3β inhibitory activity of phyto-constituents from Melissa officinalis: in silico studies. Silico Pharmacol 8:1–13

    Article  Google Scholar 

  81. Jiang X, Wang Y, Liu C et al (2021) Discovery of potent glycogen synthase kinase 3/cholinesterase inhibitors with neuroprotection as potential therapeutic agent for Alzheimer’s disease. Bioorg Med Chem 30:115940

    Article  CAS  PubMed  Google Scholar 

  82. Eskandarzadeh M, Kordestani-Moghadam P, Pourmand S et al (2021) Inhibition of GSK_3β by iridoid glycosides of snowberry (Symphoricarpos albus) effective in the treatment of Alzheimer’s disease using computational drug design methods. Front Chem 9:709932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Elangovan ND, Dhanabalan AK, Gunasekaran K et al (2021) Screening of potential drug for Alzheimer’s disease: a computational study with GSK-3 β inhibition through virtual screening, docking, and molecular dynamics simulation. J Biomol Struct Dyn 39:7065–7079

    Article  CAS  PubMed  Google Scholar 

  84. Zhu J, Wu Y, Xu L, ** J (2019) Theoretical studies on the selectivity mechanisms of glycogen synthase kinase 3β (GSK3β) with pyrazine ATP-competitive inhibitors by 3DQSAR, molecular docking, molecular dynamics simulation and free energy calculations. Curr Comput Aided Drug Des 16:17–30

    Google Scholar 

  85. Tammareddy T, Keyrouz W, Sriram RD et al (2022) Computational study of the allosteric effects of p5 on CDK5–p25 hyperactivity as alternative inhibitory mechanisms in neurodegeneration. J Phys Chem B 126:5033–5044

    Article  CAS  PubMed  Google Scholar 

  86. Zeb A, Kim D, Alam SI et al (2019) Computational simulations identify pyrrolidine-2,3-dione derivatives as novel inhibitors of cdk5/p25 complex to attenuate alzheimer’s pathology. J Clin Med 8:746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Advani D, Kumar P (2022) Computational analysis of natural compounds as cyclin-dependent kinase-5 inhibitors for Alzheimer’s and Parkinson’s disease. In: IEEE global conference on computing, power and communication technologies (GlobConPT), pp 1–6

    Google Scholar 

  88. Garkani Nejad Z, Ghanbari A (2021) Molecular modeling studies of TRIAZOLYL thiophenes as CDK5/P25 inhHibitors using 3D-QSAR and molecular docking. Iran J Anal Chem 8:29–38

    CAS  Google Scholar 

  89. El Aissouq A, Lachhab A, El Rhabori S et al (2022) Computer-aided drug design applied to a series of pyridinyl imidazole derivatives targeting p38α MAP kinase: 2D-QSAR, docking, MD simulation, and ADMET investigations. New J Chem 46:20786–20800

    Article  Google Scholar 

  90. Khan MF, Verma G, Alam P et al (2019) Dibenzepinones, dibenzoxepines and benzosuberones based p38α MAP kinase inhibitors: their pharmacophore modelling, 3D-QSAR and docking studies. Comput Biol Med 110:175–185

    Article  CAS  PubMed  Google Scholar 

  91. Živadinović B, Stamenović J, Živadinović J et al (2022) QSAR modelling, molecular docking studies and ADMET predictions of polysubstituted pyridinylimidazoles as dual inhibitors of JNK3 and p38α MAPK. J Mol Struct 1265:133504

    Article  Google Scholar 

  92. Shen T, Tao Y, Liu B et al (2022) Machine learning assisted discovery of novel p38α inhibitors from natural products. Diabetes 5:21

    Google Scholar 

  93. Liu Y, **e Y, Liu Y et al (2019) Insights into the c-Jun N-terminal kinase 3 (JNK3) inhibitors: CoMFA, CoMSIA analyses and molecular docking studies. Med Chem Res 28:1796–1805

    Article  CAS  Google Scholar 

  94. Jun J, Baek J, Kang D et al (2023) Novel C-Jun N-terminal kinase 3 inhibitors 1, 4, 5, 6-tetrahydrocyclopenta[D]imidazole-5-carboxamide: design, synthesis, molecular docking, and biological evaluation as potential therapeutics for neurodegenerative disease. Synth Mol Docking Biol Eval as Potential Ther Neurodegener Diseases. Eur J Med Chem 245: 114917

    Google Scholar 

  95. Bhardwaj VK, Singh R, Sharma J et al (2020) Structural based study to identify new potential inhibitors for dual specificity tyrosine-phosphorylation- regulated kinase. Comput Methods Prog Biomed 194:105494

    Article  Google Scholar 

  96. Shahroz MM, Sharma HK, Altamimi ASA et al (2022) Novel and potential small molecule scaffolds as DYRK1A inhibitors by integrated molecular docking-based virtual screening and dynamics simulation study. Molecules 27:1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Abduljelil A, Uzairu A, Shallangwa GA et al (2023) Natural inhibitors of DYRK1A as drug candidates against Alzheimer Disease: QSAR, molecular docking, molecular dynamics simulation and drug evaluation assessment. https://doi.org/10.21203/rs.3.rs-2443598/v1

  98. Cescon E, Cescon E, Bolcato G et al (2020) scaffold repurposing of in-house chemical library toward the identification of new casein kinase 1 δinhibitors. ACS Med Chem Lett 11:1168–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bolcato G, Cescon E, Pavan M et al (2021) A computational workflow for the identification of novel fragments acting as inhibitors of the activity of protein kinase ck1δ. Int J Mol Sci 22:9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Eduful BJ, O’Byrne SN, Temme L et al (2021) Hinge binder scaffold hop** identifies potent calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) inhibitor chemotypes. J Med Chem 64:10849–10877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Demuro S, Sauvey C, Tripathi SK et al (2022) ARN25068, a versatile starting point towards triple GSK-3β/FYN/DYRK1A inhibitors to tackle tau-related neurological disorders. Eur J Med Chem 229:114054

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

PD thanks Indian Council of Medical Research for Research Associateship (File No: BMI/11(35)/2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

De, P., Roy, K. (2023). Computational Modeling of Kinase Inhibitors as Anti-Alzheimer Agents. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer’s Disease. Neuromethods, vol 203. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3311-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3311-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3310-6

  • Online ISBN: 978-1-0716-3311-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation