Computational Modeling of DYRK1A Inhibitors as Potential Anti-Alzheimer Agents

  • Protocol
  • First Online:
Computational Modeling of Drugs Against Alzheimer’s Disease

Part of the book series: Neuromethods ((NM,volume 203))

Abstract

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a promising target for the treatment of different neurodegenerative diseases, especially Alzheimer’s disease (AD). In this chapter, different ligand-based and structure-based computational approaches were explored to develop a workflow for the selection of potential candidates as inhibitors of DYRK1A. The NuBBE database—comprising different compounds from the Brazilian biodiversity landscape—was screened with the designed workflow allowing to search for potential inhibitors. Five different compounds from this database were identified as candidates, and one of them presented not only a good interaction profile with the ATP binding site of DYRK1A but also a great synthesizable accessibility score and an optimal predicted toxicological profile. These results show the capability of the developed in silico workflow to screen large databases to find hit compounds from natural sources, therefore representing a good starting point for future further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498. https://doi.org/10.1016/0896-6273(91)90052-2

    Article  CAS  PubMed  Google Scholar 

  2. Zhang H, Cao Y, Ma L et al (2021) Possible mechanisms of tau spread and toxicity in Alzheimer’s disease. Front Cell Dev Biol 9:2064. https://doi.org/10.3389/FCELL.2021.707268/BIBTEX

    Article  CAS  Google Scholar 

  3. Verstraelen P, Detrez JR, Verschuuren M et al (2017) Dysregulation of microtubule stability impairs morphofunctional connectivity in primary neuronal networks. Front Cell Neurosci 11:173. https://doi.org/10.3389/FNCEL.2017.00173/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stotani S, Giordanetto F, Medda F (2016) DYRK1A inhibition as potential treatment for Alzheimer’s disease. Future Med Chem 8:681–696. https://doi.org/10.4155/fmc-2016-0013

    Article  CAS  PubMed  Google Scholar 

  5. de Lagrán MM, Bortolozzi A, Gispert J et al (2008) Ageing in down syndrome: DYRK1A as a candidate gene for cognitive decline. Int Med Rev Down Syndr 12:34–40. https://doi.org/10.1016/S2171-9748(08)70039-4

    Article  Google Scholar 

  6. Wegiel J, Gong CX, Hwang YW (2011) The role of DYRK1A in neurodegenerative diseases. FEBS J 278:236. https://doi.org/10.1111/J.1742-4658.2010.07955.X

    Article  CAS  PubMed  Google Scholar 

  7. Becker W, Joost HG (1998) Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Prog Nucleic Acid Res Mol Biol 62:1–17. https://doi.org/10.1016/S0079-6603(08)60503-6

    Article  Google Scholar 

  8. Arbones ML, Thomazeau A, Nakano-Kobayashi A et al (2019) DYRK1A and cognition: a lifelong relationship. Pharmacol Ther 194:199–221. https://doi.org/10.1016/j.pharmthera.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  9. Falke H, Chaikuad A, Becker A et al (2015) 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acids are selective inhibitors of DYRK1A. J Med Chem 58:3131–3143. https://doi.org/10.1021/JM501994D/SUPPL_FILE/JM501994D_SI_001.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rothweiler U, Stensen W, Brandsdal BO et al (2016) Probing the ATP-binding pocket of protein kinase DYRK1A with benzothiazole fragment molecules. J Med Chem 59:9814–9824. https://doi.org/10.1021/ACS.JMEDCHEM.6B01086

    Article  CAS  PubMed  Google Scholar 

  11. Soundararajan M, Roos AK, Savitsky P et al (2013) Structures of down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure 21:986–996. https://doi.org/10.1016/j.str.2013.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tahtouh T, Elkins JM, Filippakopoulos P et al (2012) Selectivity, cocrystal structures, and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B. J Med Chem 55:9312–9330. https://doi.org/10.1021/JM301034U/SUPPL_FILE/JM301034U_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  13. Ogawa Y, Nonaka Y, Goto T et al (2010) Development of a novel selective inhibitor of the Down syndrome-related kinase Dyrk1A. Nat Commun 1(1 1):1–9. https://doi.org/10.1038/ncomms1090

    Article  CAS  Google Scholar 

  14. Liu T, Wang Y, Wang J et al (2022) DYRK1A inhibitors for disease therapy: current status and perspectives. Eur J Med Chem 229:114062. https://doi.org/10.1016/J.EJMECH.2021.114062

    Article  CAS  PubMed  Google Scholar 

  15. Henderson SH, Sorrell F, Bennett J et al (2020) Mining public domain data to develop selective DYRK1A inhibitors. ACS Med Chem Lett 11:1620–1626. https://doi.org/10.1021/ACSMEDCHEMLETT.0C00279/SUPPL_FILE/ML0C00279_SI_002.XLSX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taylor K, Stengel W, Casalegno C, Andrew D (2014) Experiences of the REACH testing proposals system to reduce animal testing. ALTEX 31:107–128. https://doi.org/10.14573/ALTEX.1311151

    Article  PubMed  Google Scholar 

  17. Pilon AC, Valli M, Dametto AC et al NuBBE DB: an updated database to uncover chemical and biological information from Brazilian biodiversity. 7. https://doi.org/10.1038/s41598-017-07451-x

  18. Jones RL, Madinaveitia J, Metcalfe TP, Sexton WA (1950) The relationship between the constitution and the effect of chemical. Biochem J 47:110–114. https://doi.org/10.1042/bj0470110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ashby J, Paton D (1993) The influence of chemical structure on the extent and sites of carcinogenesis for 522 rodent carcinogens and 55 different human carcinogen exposures. Mutat Res 286:3–74. https://doi.org/10.1016/0027-5107(93)90003-X

    Article  CAS  PubMed  Google Scholar 

  20. Ferrari T, Cattaneo D, Gini G, et al (2013) Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction. 101080/1062936X2013773376 24:365–383. https://doi.org/10.1080/1062936X.2013.773376

  21. SARpy for SAR analysis. http://sarpy.sourceforge.net/. Accessed 22 Aug 2022

  22. Carpio LE, Sanz Y, Gozalbes R, Barigye SJ (2021) Computational strategies for the discovery of biological functions of health foods, nutraceuticals and cosmeceuticals: a review. Mol Divers 25:1425–1438. https://doi.org/10.1007/S11030-021-10277-5/TABLES/3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gómez-Ganau S, de Julián-Ortiz JV, Gozalbes R (2018) Recent advances in computational approaches for designing potential anti-Alzheimer’s agents. NeuroMethods 132:25–59. https://doi.org/10.1007/978-1-4939-7404-7_2/FIGURES/3

    Article  Google Scholar 

  24. Tropsha A, Golbraikh A (2007) Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 13:3494–3504. https://doi.org/10.2174/138161207782794257

    Article  CAS  PubMed  Google Scholar 

  25. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488. https://doi.org/10.1002/MINF.201000061

    Article  CAS  PubMed  Google Scholar 

  26. Toropov AA, Toropova AP (2020) QSPR/QSAR: state-of-art, weirdness, the future. Molecules 25:1292. https://doi.org/10.3390/MOLECULES25061292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935–949. https://doi.org/10.1038/nrd1549

    Article  CAS  PubMed  Google Scholar 

  28. Pinzi L, Rastelli G (2019) Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 20:4331. https://doi.org/10.3390/IJMS20184331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berman HM, Battistuz T, Bhat TN et al (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58:899–907. https://doi.org/10.1107/S0907444902003451

    Article  CAS  PubMed  Google Scholar 

  30. Feng Z, Verdiguel N, di Costanzo L et al (2020) Impact of the protein data bank across scientific disciplines. Data Sci J 19:1–14. https://doi.org/10.5334/DSJ-2020-025/METRICS/

    Article  CAS  Google Scholar 

  31. The Protein Data Bank: Protein structure | Learn science at Scitable. https://www.nature.com/scitable/topicpage/the-protein-data-bank-exploring-biomolecular-structure-14199109/. Accessed 29 Aug 2022

  32. Mendez D, Gaulton A, Patrícia Bento A et al (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47:D930. https://doi.org/10.1093/nar/gky1075

    Article  CAS  PubMed  Google Scholar 

  33. Lin TE, Chao MW, HuangFu WC et al (2022) Identification and analysis of a selective DYRK1A inhibitor. Biomed Pharmacother 146:112580. https://doi.org/10.1016/j.biopha.2021.112580

    Article  CAS  PubMed  Google Scholar 

  34. RDKit. RDKit: Open-Source Cheminformatics Software News

    Google Scholar 

  35. Moriwaki H, Tian YS, Kawashita N, Takagi T (2018) Mordred: a molecular descriptor calculator. J Cheminform 10:1–14. https://doi.org/10.1186/S13321-018-0258-Y/FIGURES/6

    Article  Google Scholar 

  36. Pedregosa Fabianpedregosa F, Michel V, Grisel Oliviergrisel O et al (2011) Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. J Mach Learn Res 12:2825–2830. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527628766

  37. Krieger E, Vriend G (2014) YASARA view—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 30:2981–2982. https://doi.org/10.1093/bioinformatics/btu426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hevener KE, Zhao W, Ball DM et al (2009) Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model 49:444–460. https://doi.org/10.1021/CI800293N/SUPPL_FILE/CI800293N_SI_001.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bouysset C, Fiorucci S (2021) ProLIF: a library to encode molecular interactions as fingerprints. J Cheminform 13:1–9. https://doi.org/10.1186/S13321-021-00548-6/FIGURES/4

    Article  Google Scholar 

  40. Simulation of chemical reactions and synthetic accessibility | AMBIT2. https://ambit.sourceforge.net/reactor.html. Accessed 4 Oct 2022

  41. ProtoPRED | ProtoQSAR. https://protoqsar.com/en/protopred-en/. Accessed 4 Oct 2022

  42. Extance A (2010) Alzheimer’s failure raises questions about disease-modifying strategies. Nat Rev Drug Discov 9(10):749–750. https://doi.org/10.1038/nrd3288

    Article  CAS  PubMed  Google Scholar 

  43. Pathak RK, Singh B, Sagar M et al (2020) Computational approaches in drug discovery and design. In: Computer-aided drug design, pp 1–21. https://doi.org/10.1007/978-981-15-6815-2_1

    Chapter  Google Scholar 

  44. Ferreira JPS, Albuquerque HMT, Cardoso SM et al (2021) Dual-target compounds for Alzheimer’s disease: natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur J Med Chem 221:113492. https://doi.org/10.1016/J.EJMECH.2021.113492

    Article  CAS  PubMed  Google Scholar 

  45. Li X, Hong L, Coughlan K et al (2013) Structure-activity relationship of memapsin 2: implications on physiological functions and Alzheimer’s disease. Acta Biochim Biophys Sin Shanghai 45:613–621. https://doi.org/10.1093/ABBS/GMT050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li J, Sun M, Cui X, Li C (2022) Protective effects of flavonoids against Alzheimer’s disease: pathological hypothesis, potential targets, and structure-activity relationship. Int J Mol Sci 23. https://doi.org/10.3390/IJMS231710020

  47. Malafaia D, Albuquerque HMT, Silva AMS (2021) Amyloid-β and tau aggregation dual-inhibitors: a synthetic and structure-activity relationship focused review. Eur J Med Chem 214:113209. https://doi.org/10.1016/J.EJMECH.2021.113209

    Article  CAS  PubMed  Google Scholar 

  48. Wong KY, Duchowicz PR, Mercader AG, Castro EA (2012) QSAR applications during last decade on inhibitors of acetylcholinesterase in Alzheimer’s disease. Mini Rev Med Chem 12:936–946. https://doi.org/10.2174/138955712802762365

    Article  CAS  PubMed  Google Scholar 

  49. Ambure P, Roy K (2014) Advances in quantitative structure-activity relationship models of anti-Alzheimer’s agents. Expert Opin Drug Discov 9:697–723. https://doi.org/10.1517/17460441.2014.909404

    Article  CAS  PubMed  Google Scholar 

  50. de Moura ÉP, Fernandes ND, Monteiro AFM et al (2021) Machine learning, molecular modeling, and QSAR studies on natural products against Alzheimer’s disease. Curr Med Chem 28:7808–7829. https://doi.org/10.2174/0929867328666210603104749

    Article  CAS  PubMed  Google Scholar 

  51. Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146. https://doi.org/10.2174/157340911795677602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vlachakis D (2018) Introductory chapter: molecular docking - overview, background, application and what the future holds. In: Molecular docking. https://doi.org/10.5772/INTECHOPEN.78266

    Chapter  Google Scholar 

  53. Shahroz MM, Sharma HK, Altamimi ASA et al (2022) Novel and potential small molecule scaffolds as DYRK1A inhibitors by integrated molecular docking-based virtual screening and dynamics simulation study. Molecules 27. https://doi.org/10.3390/MOLECULES27041159

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Gozalbes .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Table S1

PDB codes retrieved from Protein Data Bank. The structures selected for redocking experiments were marked (DOCX 19 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Serrano-Candelas, E., Carpio, L.E., Gozalbes, R. (2023). Computational Modeling of DYRK1A Inhibitors as Potential Anti-Alzheimer Agents. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer’s Disease. Neuromethods, vol 203. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3311-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3311-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3310-6

  • Online ISBN: 978-1-0716-3311-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation