Generation of Cerebral Cortical Neurons from Human Pluripotent Stem Cells in 3D Culture

  • Protocol
  • First Online:
Stem Cell-Based Neural Model Systems for Brain Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2683))

Abstract

Human forebrain cortical neurons are essential for fundamental functions like memory and consciousness. Generation of cortical neurons from human pluripotent stem cells provides a great source for creating models specific to cortical neuron diseases and for develo** therapeutics. This chapter describes a detailed and robust method for generating human mature cortical neurons from stem cells in 3D suspension culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 163.51
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chambers SM, Fasano CA, Papapetrou EP et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eiraku M, Watanabe K, Matsuo-Takasaki M et al (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532

    Article  CAS  PubMed  Google Scholar 

  3. Hardiman O, Al-Chalabi A, Chio A et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17071

    Article  PubMed  Google Scholar 

  4. Haupt S, Edenhofer F, Peitz M et al (2007) Stage-specific conditional mutagenesis in mouse embryonic stem cell-derived neural cells and postmitotic neurons by direct delivery of biologically active Cre recombinase. Stem Cells 25:181–188

    Article  CAS  PubMed  Google Scholar 

  5. Hu BY, Zhang SC (2010) Directed differentiation of neural-stem cells and subtype-specific neurons from hESCs. Methods Mol Biol 636:123–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang ZJ, Paul A (2019) The diversity of GABAergic neurons and neural communication elements. Nat Rev Neurosci 20:563–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lancaster MA, Renner M, Martin CA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  CAS  PubMed  Google Scholar 

  8. Li XJ, Du ZW, Zarnowska ED et al (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23:215–221

    Article  PubMed  Google Scholar 

  9. Li XJ, Zhang X, Johnson MA et al (2009) Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development 136:4055–4063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lim L, Mi D, Llorca A et al (2018) Development and functional diversification of cortical interneurons. Neuron 100:294–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marin O (2012) Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 13:107–120

    Article  CAS  PubMed  Google Scholar 

  12. Munoz-Sanjuan I, Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3:271–280

    Article  CAS  PubMed  Google Scholar 

  13. Pankratz MT, Li XJ, Lavaute TM et al (2007) Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25:1511–1520

    Article  CAS  PubMed  Google Scholar 

  14. Pasca AM, Sloan SA, Clarke LE et al (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12:671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Poduri A, Evrony GD, Cai X et al (2013) Somatic mutation, genomic variation, and neurological disease. Science 341:1237758

    Article  PubMed  PubMed Central  Google Scholar 

  16. Qi Y, Zhang XJ, Renier N et al (2017) Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol 35:154–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stern CD (2005) Neural induction: old problem, new findings, yet more questions. Development 132:2007–2021

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki IK, Vanderhaeghen P (2015) Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells. Development 142:3138–3150

    Article  CAS  PubMed  Google Scholar 

  19. Tremblay R, Lee S, Rudy B (2016) GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91:260–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7:687–696

    Article  CAS  PubMed  Google Scholar 

  21. Zhang SC, Wernig M, Duncan ID et al (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by NIH-NINDS (NS096282, NS076352, NS086604), NICHD (HD106197, HD090256), the National Medical Research Council of Singapore (MOH-000212, MOH-000207), Ministry of Education of Singapore (MOE2018-T2-2-103), Aligning Science Across Parkinson’s (ASAP-000301), the Bleser Family Foundation, and the Busta Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Chun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yan, Y., Zhang, SC. (2023). Generation of Cerebral Cortical Neurons from Human Pluripotent Stem Cells in 3D Culture. In: Huang, YW.A., Pak, C. (eds) Stem Cell-Based Neural Model Systems for Brain Disorders. Methods in Molecular Biology, vol 2683. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3287-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3287-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3286-4

  • Online ISBN: 978-1-0716-3287-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation