Site-Specific Incorporation of Sulfotyrosine into Proteins in Mammalian Cells

  • Protocol
  • First Online:
Genetically Incorporated Non-Canonical Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2676))

  • 702 Accesses

Abstract

Protein tyrosine O-sulfation (PTS) plays a crucial role in numerous extracellular protein-protein interactions. It is involved in diverse physiological processes and the development of human diseases, including AIDS and cancer. To facilitate the study of PTS in live mammalian cells, an approach for the site-specific synthesis of tyrosine-sulfated proteins (sulfoproteins) was developed. This approach takes advantage of an evolved Escherichia coli tyrosyl-tRNA synthetase to genetically encode sulfotyrosine (sTyr) into any proteins of interest (POI) in response to a UAG stop codon. Here, we give a step-by-step account of the incorporation of sTyr in HEK293T cells using the enhanced green fluorescent protein as an example. This method can be widely applied to incorporating sTyr into any POI to investigate the biological functions of PTS in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bettelheim FR (1954) Tyrosine O-sulfate in a peptide from fibrinogen. J Am Chem Soc 76:2838–2839. https://doi.org/10.1021/ja01639a073

    Article  CAS  Google Scholar 

  2. Kehoe JW, Bertozzi CR (2000) Tyrosine sulfation: a modulator of extracellular protein-protein interactions. Chem Biol 7(3):R57–R61. https://doi.org/10.1016/S1074-5521(00)00093-4

    Article  CAS  PubMed  Google Scholar 

  3. Moore KL (2003) The biology and enzymology of protein tyrosine O-sulfation. J Biol Chem 278(27):24243–24246. https://doi.org/10.1074/jbc.R300008200

    Article  CAS  PubMed  Google Scholar 

  4. Farzan M, Mirzabekov T, Kolchinsky P, Wyatt R, Cayabyab M, Gerard NP, Gerard C, Sodroski J, Choe H (1999) Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96(5):667–676. https://doi.org/10.1016/S0092-8674(00)80577-2

    Article  CAS  PubMed  Google Scholar 

  5. Stone MJ, Chuang S, Hou X, Shoham M, Zhu JZ (2009) Tyrosine sulfation: an increasingly recognized post-translational modification of secreted proteins. New Biotechnol 25(5):299–317. https://doi.org/10.1016/j.nbt.2009.03.011

    Article  CAS  Google Scholar 

  6. Thompson RE, Liu X, Ripoll-Rozada J, Alonso-Garcia N, Parker BL, Pereira PJB, Payne RJ (2017) Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors. Nat Chem 9(9):909–917. https://doi.org/10.1038/nchem.2744

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Hitomi J, Liu CC (2018) Characterization of a sulfated anti-HIV antibody using an expanded genetic code. Biochemistry 57(20):2903–2907. https://doi.org/10.1021/acs.biochem.8b00374

    Article  CAS  PubMed  Google Scholar 

  8. Koeller KM, Smith MEB, Wong CH (2000) Chemoenzymatic synthesis of PSGL-1 glycopeptides: sulfation on tyrosine affects glycosyltransferase-catalyzed synthesis of the O-glycan. Bioorg Med Chem 8(5):1017–1025. https://doi.org/10.1016/S0968-0896(00)00041-9

    Article  CAS  PubMed  Google Scholar 

  9. Kitagawa K, Aida C, Fujiwara H, Yagami T, Futaki S, Kogire M, Ida J, Inoue K (2001) Facile solid-phase synthesis of sulfated tyrosine-containing peptides: total synthesis of human big gastrin-II and cholecystokinin (CCK)-39. J Org Chem 66(1):1–10. https://doi.org/10.1021/jo000895y

    Article  CAS  PubMed  Google Scholar 

  10. Stone MJ, Payne RJ (2015) Homogeneous sulfopeptides and sulfoproteins: synthetic approaches and applications to characterize the effects of tyrosine sulfation on biochemical function. Acc Chem Res 48(8):2251–2261. https://doi.org/10.1021/acs.accounts.5b00255

    Article  CAS  PubMed  Google Scholar 

  11. Liu CC, Schultz PG (2006) Recombinant expression of selectively sulfated proteins in Escherichia coli. Nat Biotechnol 24(11):1436–1440. https://doi.org/10.1038/nbt1254

    Article  CAS  PubMed  Google Scholar 

  12. He X, Chen Y, Beltran DG, Kelly M, Ma B, Lawrie J, Wang F, Dodds E, Zhang L, Guo J, Niu W (2020) Functional genetic encoding of sulfotyrosine in mammalian cells. Nat Commun 11(1):4820. https://doi.org/10.1038/s41467-020-18629-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ju T, Niu W, Cerny R, Bollman J, Roy A, Guo J (2013) Molecular recognition of sulfotyrosine and phosphotyrosine by the Src homology 2 domain. Mol BioSyst 9(7):1829–1832. https://doi.org/10.1039/c3mb70061e

    Article  CAS  PubMed  Google Scholar 

  14. Liu W, Brock A, Chen S, Chen S, Schultz PG (2007) Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods 4(3):239–244. https://doi.org/10.1038/nmeth1016

    Article  CAS  PubMed  Google Scholar 

  15. He X, Ma B, Chen Y, Guo J, Niu W (2022) Genetic encoding of a nonhydrolyzable phosphotyrosine analog in mammalian cells. Chem Commun 58(39):5897–5900. https://doi.org/10.1039/d2cc01578a

    Article  CAS  Google Scholar 

  16. Elsasser SJ, Ernst RJ, Walker OS, Chin JW (2016) Genetic code expansion in stable cell lines enables encoded chromatin modification. Nat Methods 13(2):158–164. https://doi.org/10.1038/nmeth.3701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chatterjee A, **ao H, Bollong M, Ai H-W, Schultz PG (2013) Efficient viral delivery system for unnatural amino acid mutagenesis in mammalian cells. Proc Natl Acad Sci U S A 110(29):11803–11808. https://doi.org/10.1073/pnas.1309584110

    Article  PubMed  PubMed Central  Google Scholar 

  18. Si L, Xu H, Zhou X, Zhang Z, Tian Z, Wang Y, Wu Y, Zhang B, Niu Z, Zhang C, Fu G, **ao S, **a Q, Zhang L, Zhou D (2016) Generation of influenza a viruses as live but replication-incompetent virus vaccines. Science 354(6316):1170–1173. https://doi.org/10.1126/science.aah5869

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiantao Guo or Wei Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

He, X., Chen, Y., Guo, J., Niu, W. (2023). Site-Specific Incorporation of Sulfotyrosine into Proteins in Mammalian Cells. In: Tsai, YH., Elsässer, S.J. (eds) Genetically Incorporated Non-Canonical Amino Acids. Methods in Molecular Biology, vol 2676. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3251-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3251-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3250-5

  • Online ISBN: 978-1-0716-3251-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation