Isolation and Purification of Mycobacterial Extracellular Vesicles (EVs)

  • Protocol
  • First Online:
Bacterial Pathogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2674))

Abstract

Bacterial extracellular vesicles (EVs) contain numerous active substances that mediate bacterial interactions with their host and with other microbes. Best defined are the EVs from Gram-negative bacteria that have been shown to deliver virulence factors, modulate the immune responses, mediate antibiotic resistance, and also inhibit competitive microbes. Due to the complex cell wall structures of Gram-positive bacteria and mycobacteria, EVs from these bacteria were only recently reported. This protocol describes the isolation of EVs from mycobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 163.51
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. (WHO) WHO (2021) Global tuberculosis report 2021, p 25. ISBN: 978–92–4-003702-1

    Google Scholar 

  2. Mourenza ÁGJ, Mateos LM, Letek M (2020) Novel treatments against Mycobacterium tuberculosis based on drug repurposing. Antibiotics 9(9):550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walzl G, Ronacher K, Djoba Siawaya JF, Dockrell HM (2008) Biomarkers for TB treatment response: challenges and future strategies. J Infect 57(2):103–109

    Article  PubMed  Google Scholar 

  4. Ginsberg AM, Spigelman M (2007) Challenges in tuberculosis drug research and development. Nat Med 13(3):290–294

    Article  CAS  PubMed  Google Scholar 

  5. Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL (2022) Tuberculosis drug discovery: challenges and new horizons. J Med Chem 65(11):7489–7531

    Article  CAS  PubMed  Google Scholar 

  6. Kumar M, Singh SK, Singh PP, Singh VK, Rai AC, Srivastava AK et al (2021) Potential anti-Mycobacterium tuberculosis activity of plant secondary metabolites: insight with molecular docking interactions. Antioxidants (Basel) 10(12):1990

    Article  CAS  PubMed  Google Scholar 

  7. Maiolini M, Gause S, Taylor J, Steakin T, Shipp G, Lamichhane P et al (2020) The war against tuberculosis: a review of natural compounds and their derivatives. Molecules 25(13)

    Google Scholar 

  8. Quan D, Nagalingam G, Payne R, Triccas JA (2017) New tuberculosis drug leads from naturally occurring compounds. Int J Infect Dis 56:212–220

    Article  CAS  PubMed  Google Scholar 

  9. Tenland E, Krishnan N, Ronnholm A, Kalsum S, Puthia M, Morgelin M et al (2018) A novel derivative of the fungal antimicrobial peptide plectasin is active against Mycobacterium tuberculosis. Tuberculosis (Edinb) 113:231–238

    Article  CAS  PubMed  Google Scholar 

  10. Tenland E, Pochert A, Krishnan N, Umashankar Rao K, Kalsum S, Braun K et al (2019) Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS One 14(2):e0212858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rao KU, Henderson DI, Krishnan N, Puthia M, Glegola-Madejska I, Brive L et al (2021) A broad spectrum anti-bacterial peptide with an adjunct potential for tuberculosis chemotherapy. Sci Rep 11(1):4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, Veeraraghavan U et al (2011) Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest 121(4):1471–1483

    Article  PubMed  PubMed Central  Google Scholar 

  13. Caruana JC, Walper SA (2020) Bacterial membrane vesicles as mediators of microbe – microbe and microbe – host community interactions. Front Microbiol 11:432

    Article  PubMed  PubMed Central  Google Scholar 

  14. Prados-Rosales R, Weinrick BC, Pique DG, Jacobs WR Jr, Casadevall A, Rodriguez GM (2014) Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. J Bacteriol 196(6):1250–1256

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chiplunkar SS, Silva CA, Bermudez LE, Danelishvili L (2019) Characterization of membrane vesicles released by Mycobacterium avium in response to environment mimicking the macrophage phagosome. Future Microbiol 14:293–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dauros Singorenko PCV, Whitcombe A, Simonov D, Hong J, Phillips A, Swift S, Blenkiron C (2017) Isolation of membrane vesicles from prokaryotes: a technical and biological comparison reveals heterogeneity. J Extracell Vesicles 6(1):1324731

    Article  PubMed  PubMed Central  Google Scholar 

  17. Prados-Rosales R, Brown L, Casadevall A, Montalvo-Quiros S, Luque-Garcia JL (2014) Isolation and identification of membrane vesicle-associated proteins in Gram-positive bacteria and mycobacteria. MethodsX 1:124–129

    Article  PubMed  PubMed Central  Google Scholar 

  18. Prados-Rosales R, Carreno LJ, Batista-Gonzalez A, Baena A, Venkataswamy MM, Xu J et al (2014) Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of Mycobacterium tuberculosis. MBio 5(5):e01921–e01914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yuan F, Li YM, Wang Z (2021) Preserving extracellular vesicles for biomedical applications: consideration of storage stability before and after isolation. Drug Deliv 28(1):1501–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bos J, Cisneros LH, Mazel D (2021) Real-time tracking of bacterial membrane vesicles reveals enhanced membrane traffic upon antibiotic exposure. Sci Adv 7(4):eabd1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klimentova J, Stulik J (2015) Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiol Res 170:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Godaly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rao, K.U., Godaly, G. (2023). Isolation and Purification of Mycobacterial Extracellular Vesicles (EVs). In: Nordenfelt, P., Collin, M. (eds) Bacterial Pathogenesis. Methods in Molecular Biology, vol 2674. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3243-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3243-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3242-0

  • Online ISBN: 978-1-0716-3243-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation