Protocol for Classification Single-Cell PBMC Types from Pathological Samples Using Supervised Machine Learning

  • Protocol
  • First Online:
Computational Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2673))

Abstract

Peripheral blood mononuclear cells (PBMC) are mixed subpopulations of blood cells composed of five cell types. PBMC are widely used in the study of the immune system, infectious diseases, cancer, and vaccine development. Single-cell transcriptomics (SCT) allows the labeling of cell types by gene expression patterns from biological samples. Classifying cells into cell types and states is essential for single-cell analyses, especially in the classification of diseases and the assessment of therapeutic interventions, and for many secondary analyses. Most of the classification of cell types from SCT data use unsupervised clustering or a combination of unsupervised and supervised methods including manual correction. In this chapter, we describe a protocol that uses supervised machine learning (ML) methods with SCT data for the classification of PBMC cell types in samples representing pathological states. This protocol has three parts: (1) data preprocessing, (2) labeling of reference PBMC SCT datasets and training supervised ML models, and (3) labeling new PBMC datasets from disease samples. This protocol enables building classification models that are of high accuracy and efficiency. Our example focuses on 10× Genomics technology but applies to datasets from other SCT platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H (2015) The impact of food bioactives on health: in vitro and ex vivo models. Springer, Cham

    Book  Google Scholar 

  2. Shaikh RA, Zhong J, Lyu M, Lin S, Keskin D, Zhang G, Chitkushev L, Brusic V (2019) Classification of five cell types from PBMC samples using single cell transcriptomics and artificial neural networks. In: 2019 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 2207–2213

    Chapter  Google Scholar 

  3. Baine MJ, Chakraborty S, Smith LM, Mallya K, Sasson AR, Brand RE, Batra SK (2011) Transcriptional profiling of peripheral blood mononuclear cells in pancreatic cancer patients identifies novel genes with potential diagnostic utility. PLoS One 6(2):e17014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang W-S, Liu L-X, Li G-P, Chen Y, Li C-Y, ** D-Y, Wang X-L (2013) Combined serum CA19-9 and miR-27a-3p in peripheral blood mononuclear cells to diagnose pancreatic cancer combined CA19-9 and miR-27a-3p to diagnose pancreatic cancer. Cancer Prev Res 6(4):331–338

    Article  CAS  Google Scholar 

  5. Scott MK, Quinn K, Li Q, Carroll R, Warsinske H, Vallania F, Chen S, Carns MA, Aren K, Sun J (2019) Increased monocyte count as a cellular biomarker for poor outcomes in fibrotic diseases: a retrospective, multicentre cohort study. Lancet Respir Med 7(6):497–508

    Article  PubMed  PubMed Central  Google Scholar 

  6. El-Awady MK, Ismail SM, El-Sagheer M, Sabour YA, Amr KS, Zaki EA (1999) Assay for hepatitis C virus in peripheral blood mononuclear cells enhances sensitivity of diagnosis and monitoring of HCV-associated hepatitis. Clin Chim Acta 283(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  7. Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carre C, Burdin N, Visan L, Ceccarelli M, Poidinger M (2019) RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep 26(6):1627–40.e1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang L, Zhang Y, Mitic N, Keskin DB, Zhang GL, Chitkushev L, Brusic V (2020) Single-cell mRNA Profiles in PBMC. In: 2020 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 1318–1323

    Chapter  Google Scholar 

  10. Bakken T, Cowell L, Aevermann BD, Novotny M, Hodge R, Miller JA, Lee A, Chang I, McCorrison J, Pulendran B (2017) Cell type discovery and representation in the era of high-content single cell phenoty**. BMC Bioinf 18(17):7–16

    Google Scholar 

  11. Arendt D, Musser JM, Baker CV, Bergman A, Cepko C, Erwin DH, Pavlicev M, Schlosser G, Widder S, Laubichler MD (2016) The origin and evolution of cell types. Nat Rev Genet 17(12):744–757

    Article  CAS  PubMed  Google Scholar 

  12. Morris SA (2019) The evolving concept of cell identity in the single cell era. Development 146(12):dev169748

    Article  CAS  PubMed  Google Scholar 

  13. Kim HJ, Tam PP, Yang P (2021) Defining cell identity beyond the premise of differential gene expression. Cell Regen 10(1):1–3

    Article  CAS  Google Scholar 

  14. Savulescu AF, Jacobs C, Negishi Y, Davignon L, Mhlanga MM (2020) Pinpointing cell identity in time and space. Front Mol Biosci 7:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, Vallejos CA, Campbell KR, Beerenwinkel N, Mahfouz A (2020) Eleven grand challenges in single-cell data science. Genome Biol 21(1):1–35

    Article  Google Scholar 

  16. Lin X, Zhong J, Lyu M, Lin S, Keskin DB, Zhang G, Brusic V, Chitkushev LT (2020) Artificial neural network system for cell classification using single cell RNA expression. In: 2020 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 1253–1257

    Chapter  Google Scholar 

  17. Lyu M, Zhang Y, Yang L, Lin X, Li Y, ** H, Bellotti AG, Mitic N, Brusic V (2021) PBMC cell classification from single cell mRNA expression by artificial neural networks, profiles, gene markers, and protein markers. In: 2021 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 3285–3290

    Chapter  Google Scholar 

  18. Deng Y, Bao F, Dai Q, Wu LF, Altschuler SJ (2019) Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nat Methods 16(4):311–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karaiskos N, Rahmatollahi M, Boltengagen A, Liu H, Hoehne M, Rinschen M, Schermer B, Benzing T, Rajewsky N, Kocks C (2018) A single-cell transcriptome atlas of the mouse glomerulus. J Am Soc Nephrol 29(8):2060–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rendeiro AF, Krausgruber T, Fortelny N, Zhao F, Penz T, Farlik M, Schuster LC, Nemc A, Tasnády S, Réti M (2020) Chromatin map** and single-cell immune profiling define the temporal dynamics of ibrutinib response in CLL. Nat Commun 11(1):1–14

    Article  Google Scholar 

  21. Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, Hughes TK, Wadsworth MH, Burks T, Nguyen LT (2020) Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol 38(6):737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Luning Y, Brusic V (2020) Automation of gene expression profile analysis in single cell data. In: 2020 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 1329–1334

    Chapter  Google Scholar 

  23. Birney E, Andrews TD, Bevan P, Caccamo M, Chen Y, Clarke L, Coates G, Cuff J, Curwen V, Cutts T (2004) An overview of Ensembl. Genome Res 14(5):925–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lun AT, McCarthy DJ, Marioni JC (2016) A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res 5:2122

    PubMed  PubMed Central  Google Scholar 

  25. Agarwal D, Sandor C, Volpato V, Caffrey TM, Monzón-Sandoval J, Bowden R, Alegre-Abarrategui J, Wade-Martins R, Webber C (2020) A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. Nat Commun 11(1):1–11

    Article  Google Scholar 

  26. Liu W, Venugopal S, Majid S, Ahn IS, Diamante G, Hong J, Yang X, Chandler SH (2020) Single-cell RNA-seq analysis of the brainstem of mutant SOD1 mice reveals perturbed cell types and pathways of amyotrophic lateral sclerosis. Neurobiol Dis 141:104877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vicidomini R, Nguyen TH, Choudhury SD, Brody T, Serpe M (2021) Assembly and exploration of a single cell atlas of the drosophila larval ventral cord. Identification of rare cell types. Curr Protoc 1(2):e37

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Luning Y, Zhang Y, Mitic N, Keskin DB, Zhang GL, Chitkushev L, Brusic V (2020) Prediction of PBMC cell types using scRNAseq reference profiles. In: 2020 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 1324–1328

    Google Scholar 

  29. Zhong J, Shaikh RA, Haoguo W, **n L, Zhiwei C, Chitkushev LT, Zhang G, Keskin DB, Brusic V (2020) Classification of PBMC cell types using scRNAseq, ANN, and incremental learning. In: 2020 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 1351–1355

    Chapter  Google Scholar 

Download references

Acknowledgments

DK received funding from the Division of Cancer Epidemiology and Genetics, National Cancer Institute (R21 CA216772-01A1) and from National Cancer Institute (SPORE-2P50CA101942-11A1). VB received Ningbo Municipal Bureau of Science and Technology Grant (2019F1028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Brusic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lyu, M. et al. (2023). Protocol for Classification Single-Cell PBMC Types from Pathological Samples Using Supervised Machine Learning. In: Reche, P.A. (eds) Computational Vaccine Design. Methods in Molecular Biology, vol 2673. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3239-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3239-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3238-3

  • Online ISBN: 978-1-0716-3239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation