Extended DNA Fibers for High-Resolution Map**

  • Protocol
  • First Online:
Plant Cytogenetics and Cytogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2672))

Abstract

DNA fiber-FISH is an easy and simple light microscopic method to map unique and repeat sequences relative to each other at the molecular scale. A standard fluorescence microscope and a DNA labeling kit are sufficient to visualize DNA sequences from any tissue or organ. Despite the enormous progress of high-throughput sequencing technologies, DNA fiber-FISH remains a unique and indispensable tool to detect chromosomal rearrangements and to demonstrate differences between related species at high resolution. We discuss standard and alternative steps to easily prepare extended DNA fibers for high-resolution FISH map**.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci 64:600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Volpi EV, Bridger JM (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. BioTechniques 45:385–409

    Article  CAS  PubMed  Google Scholar 

  3. Jiang J (2019) Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosom Res 27:153–165

    Article  CAS  Google Scholar 

  4. Heng HH, Squire J, Tsui LC (1992) High-resolution map** of mammalian genes by in situ hybridization to free chromatin. Proc Natl Acad Sci 89:9509–9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wiegant J, Kalle W, Mullenders L, Brookes S, Hoovers JMN, Dauwerse JG, Van Ommen GJB, Raap AK (1992) High-resolution in situ hybridization using DNA halo preparations. Hum Mol Genet 1:587–591

    Article  CAS  PubMed  Google Scholar 

  6. Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, Jong JH (1996) High-resolution physical map** in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9(3):421–430

    Article  CAS  PubMed  Google Scholar 

  7. de Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants – techniques and applications. Trends Plant Sci 4:258–263

    Article  Google Scholar 

  8. Cook PR, Brazell IA, Jost E (1976) Characterization of nuclear structures containing superhelical DNA. J Cell Sci 22:303–324

    Article  CAS  PubMed  Google Scholar 

  9. Vogelstein B, Pardoll DM, Coffey DS (1980) Supercoiled loops and eucaryotic DNA replication. Cell 22:79–85

    Article  CAS  PubMed  Google Scholar 

  10. Cohen SM, Chastain PD, Cordeiro-Stone M, Kaufman DG (2009) DNA replication and the GINS complex: localization on extended chromatin fibers. Epigenetics Chromatin 2:6–6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. ** W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell Online 16:571–581

    Article  CAS  Google Scholar 

  13. Fidlerová H, Senger G, Kost M, Sanseau P, Sheer D (1994) Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet Genome Res 65:203–205

    Article  Google Scholar 

  14. Gerdes MG, Carter KC, Moen PT, Lawrence JB (1994) Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos. J Cell Biol 126:289–304

    Article  CAS  PubMed  Google Scholar 

  15. Koo D, Jiang J (2009) Super-stretched pachytene chromosomes for fluorescence in situ hybridization map** and immunodetection of DNA methylation. Plant J 59:509–516

    Article  CAS  PubMed  Google Scholar 

  16. Valárik M, Bartoš J, Kovářová P, Kubaláková M, De Jong JH, Doležel J (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J 37:940–950

    Article  PubMed  Google Scholar 

  17. Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D (1994) Alignment and sensitive detection of DNA by a moving interface. Science 265:2096–2098

    Article  CAS  PubMed  Google Scholar 

  18. Weier H-UG, Wang L, Mullikin JC, Zhu Y, Cheng J-F, Greulich KM, Bensimon A, Gray JW (1995) Quantitative DNA fiber map**. Hum Mol Genet 4:1903–1910

    Article  CAS  PubMed  Google Scholar 

  19. Jackson SA, Dong F, Jiang J (1999) Digital map** of bacterial artificial chromosomes by fluorescence in situ hybridization. Plant J 17(5):581–587

    Article  CAS  PubMed  Google Scholar 

  20. Houseal TW, Dackowski WR, Landes GM, Klinger KW (1994) High resolution map** of overlap** cosmids by fluorescence in situ hybridization. Cytometry 15:193–198

    Article  CAS  PubMed  Google Scholar 

  21. Parra I, Windle B (1993) High resolution visual map** of stretched DNA by fluorescent hybridization. Nat Genet 5:17–21

    Article  CAS  PubMed  Google Scholar 

  22. Fransz P, de Jong H, Zabel P (1998) Plant molecular biology manual, pp 49–66. https://doi.org/10.1007/978-94-011-5242-6_4

    Book  Google Scholar 

  23. Dechyeva D, Schmidt T (2016) Plant cytogenetics, methods and protocols. Methods Mol Biol 1429:23–33

    Article  CAS  PubMed  Google Scholar 

  24. Yang K, Zhang H, Converse R, Wang Y, Rong X, Wu Z, Luo B, Xue L, Jian L, Zhu L, Wang X (2011) Fluorescence in situ hybridization on plant extended chromatin DNA fibers for single-copy and repetitive DNA sequences. Plant Cell Rep 30:1779

    Article  CAS  PubMed  Google Scholar 

  25. Zhang W, Lee H-R, Koo D-H, Jiang J (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20:25–34

    Article  PubMed  PubMed Central  Google Scholar 

  26. Weier H-UG (2001) DNA fiber map** techniques for the assembly of high-resolution physical maps. J Histochem Cytochem 49:939–948

    Article  CAS  PubMed  Google Scholar 

  27. Lysak M, Fransz P, Schubert I (2006) Cytogenetic analyses of Arabidopsis. Methods Mol Biol 323:173–186. https://doi.org/10.1385/1-59745-003-0:173

    Article  PubMed  Google Scholar 

  28. Bey TD, Koini M, Fransz P (2017) Plant chromatin dynamics, methods and protocols. Methods Mol Biol 1675:467–480

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fransz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fransz, P., van de Belt, J., de Jong, H. (2023). Extended DNA Fibers for High-Resolution Map**. In: Heitkam, T., Garcia, S. (eds) Plant Cytogenetics and Cytogenomics. Methods in Molecular Biology, vol 2672. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3226-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3226-0_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3225-3

  • Online ISBN: 978-1-0716-3226-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation