Plant Cytogenetics: From Chromosomes to Cytogenomics

  • Protocol
  • First Online:
Plant Cytogenetics and Cytogenomics

Abstract

Chromosomes have been studied since the late nineteenth century in the disciplines of cytology and cytogenetics. Analyzing their numbers, features, and dynamics has been tightly linked to the technical development of preparation methods, microscopes, and chemicals to stain them, with latest continuing developments described in this volume. At the end of the twentieth and beginning of the twenty-first centuries, DNA technology, genome sequencing, and bioinformatics have revolutionized how we see, use, and analyze chromosomes. The advent of in situ hybridization has shaped our understanding of genome organization and behavior by linking molecular sequence information with the physical location along chromosomes and genomes. Microscopy is the best technique to accurately determine chromosome number. Many features of chromosomes in interphase nuclei or pairing and disjunction at meiosis, involving physical movement of chromosomes, can only be studied by microscopy. In situ hybridization is the method of choice to characterize the abundance and chromosomal distribution of repetitive sequences that make up the majority of most plant genomes. These most variable components of a genome are found to be species- and occasionally chromosome-specific and give information about evolution and phylogeny. Multicolor fluorescence hybridization and large pools of BAC or synthetic probes can paint chromosomes and we can follow them through evolution involving hybridization, polyploidization, and rearrangements, important at a time when structural variations in the genome are being increasingly recognized. This volume discusses many of the most recent developments in the field of plant cytogenetics and gives carefully compiled protocols and useful resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33. https://doi.org/10.1111/j.1365-313X.2011.04544.x

    Article  CAS  PubMed  Google Scholar 

  2. Soltis PS, Marchant DB, Van de Peer Y, Soltis DE (2015) Polyploidy and genome evolution in plants. Curr Opin Genet Dev 35:119–125. https://doi.org/10.1016/j.gde.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  3. Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot 120:183–194. https://doi.org/10.1093/aob/mcx079

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot 100:1073–1084. https://doi.org/10.1093/aob/mcm191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmidt T, Heitkam T, Liedtke S, Schubert V, Menzel G (2019) Adding color to a century-old enigma: multi-color chromosome identification unravels the autotriploid nature of saffron (Crocus sativus) as a hybrid of wild Crocus cartwrightianus cytotypes. New Phytol 222:1965–1980. https://doi.org/10.1111/nph.15715

    Article  CAS  PubMed  Google Scholar 

  6. Herklotz V, Ritz CM (2017) Multiple and asymmetrical origin of polyploid dog rose hybrids (Rosa L. sect. Caninae (DC.) Ser.) involving unreduced gametes. Ann Bot 120:209–220. https://doi.org/10.1093/aob/mcw217

    Article  CAS  PubMed  Google Scholar 

  7. Tomaszewska P, Vorontsova MS, Renvoize SA, Ficinski SZ, Tohme J, Schwarzacher T, Castiblanco V, de Vega JJ, Mitchell RAC, Heslop-Harrison JS (2021) Complex polyploid and hybrid species in an apomictic and sexual tropical forage grass group: genomic composition and evolution in Urochloa (Brachiaria) species. Ann Bot 129 (in press) https://doi.org/10.1093/aob/mcab147

  8. Waldeyer W (1888) Über Karyokinese und ihre Beziehung zu den Befruchtungsvorgängen. Arch Mikr Anat 32:1–222

    Article  Google Scholar 

  9. Darlington CD (1937) Recent advances in cytology, 2nd edn. London Churchill

    Google Scholar 

  10. Darlington CD, LaCour LF (1976) The handling of chromosomes, 6th edn. Wiley, New York

    Google Scholar 

  11. Arrighi FE, Hsu TC (1971) Localization of heterochromatin in human chromosomes. Cytogenetics 10:81–86. https://doi.org/10.1159/000130130

    Article  CAS  PubMed  Google Scholar 

  12. Marks GE (1975) The Giemsa-staining centromeres of Nigella damascena. J Cell Sci 18(19):25. https://doi.org/10.1242/jcs.18.1.19

    Article  Google Scholar 

  13. Schwarzacher T, Schweizer D (1982) Karyotype analysis and heterochromatin differentiation with Giemsa C-banding and fluorescent counterstaining in Cephalanthera (Orchidaceae). Plant Syst Evol 141:91–113. https://doi.org/10.1007/BF00986411

    Article  Google Scholar 

  14. Schweizer D (1981) Counterstain-enhanced chromosome banding. Hum Genet 57:1–14. https://doi.org/10.1007/BF00271159

    Article  CAS  PubMed  Google Scholar 

  15. Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297. https://doi.org/10.1007/BF00986805

    Article  Google Scholar 

  16. Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. BIO Scientific Publisher Limited, Oxford

    Google Scholar 

  17. Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63:378–383. https://doi.org/10.1073/pnas.63.2.378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. John HA, Birnstiel ML, Jones KW (1969) RNA-DNA hybrids at the cytological level. Nature 223:582–587. https://doi.org/10.1038/223582a0

    Article  CAS  PubMed  Google Scholar 

  19. Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168:1356–1358. https://doi.org/10.1126/science.168.3937.1356

    Article  CAS  PubMed  Google Scholar 

  20. Harper ME, Saunders GF (1981) Localization of single copy DNA sequences on G-banded human chromosomes by in situ hybridization. Chromosoma 83:431–439. https://doi.org/10.1007/BF00327364

    Article  CAS  PubMed  Google Scholar 

  21. Ferguson-Smith MA (1991) Invited editorial: putting the genetics back into cytogenetics. Am J Hum Genet 48:179–182

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hutchinson J, Lonsdale LM (1982) The chromosomal distribution of cloned highly repetitive sequences from hexaploid wheat. Heredity 48:371–376. https://doi.org/10.1038/hdy.1982.49

    Article  CAS  Google Scholar 

  23. Langer PR, Waldrop AK, Ward DA (1981) Enzymatic synthesis of biotin labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci USA 78:6633–6637. https://doi.org/10.1073/pnas.78.11.6633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered 76:78–81. https://doi.org/10.1093/oxfordjournals.jhered.a110049

    Article  Google Scholar 

  25. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci 83:2934–2938. https://doi.org/10.1073/pnas.83.9.2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324. https://doi.org/10.1093/oxfordjournals.aob.a087847

    Article  Google Scholar 

  27. Eisel D, Seth O, Grünewald-Janho S, Kruchen B (2008) DIG application manual for non-radioactive in situ hybridization, 4th edn. Roche Diagnostics GmbH, Mannheim

    Google Scholar 

  28. Cuadrado Á, Jouve N (2010) Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 119:495–503. https://doi.org/10.1007/s00412-010-0273-x

    Article  PubMed  Google Scholar 

  29. Volpi EV, Bridger JM (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. BioTechniques 45:385–409. https://doi.org/10.2144/000112811

    Article  CAS  PubMed  Google Scholar 

  30. Meinkoth J, Wahl G (1984) Hybridization of nucleic acids immobilized on solid supports. Anal Biochem 138:267–284. https://doi.org/10.1016/0003-2697(84)90808-X

    Article  CAS  PubMed  Google Scholar 

  31. Heslop-Harrison JS, Schwarzacher T, Anamthawat-Jonsson K, Leitch AR, Shi M, Leitch IJ (1991) In situ hybridization with automated chromosome denaturation. Technique 3:109–116

    Google Scholar 

  32. Schwarzacher T (2016) Preparation and fluorescent analysis of plant metaphase chromosomes. In: Caillaud MC (ed) Plant cell division. Methods in molecular biology, vol 1370. Humana Press, New York, pp 87–103. https://doi.org/10.1007/978-1-4939-3142-2_7

    Chapter  Google Scholar 

  33. Doležel J, Lucretti S, Schubert I (1994) Plant chromosome analysis and sorting by flow cytometry. Crit Rev Plant Sci 13:275–309. https://doi.org/10.1080/07352689409701917

    Article  Google Scholar 

  34. Staginnus C, Gregor W, Mette MF, Teo CH, Borroto-Fernández EG, Machado MLC, Matzke M, Schwarzacher T (2007) Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species. BMC Plant Biol 7:24. https://doi.org/10.1186/1471-2229-7-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Szinay D, Chang SB, Khrustaleva L, Peters S, Schijlen E, Bai Y, Stiekema WJ, Van Ham RCHJ, de Jong H, Klein Lankhorst RM (2008) High-resolution chromosome map** of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J 56:627–637. https://doi.org/10.1111/j.1365-313X.2008.03626.x

    Article  CAS  PubMed  Google Scholar 

  36. Koorneef M, Fransz P, de Jong H (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosom Res 11:183–194. https://doi.org/10.1023/A:1022827624082

    Article  Google Scholar 

  37. Mandáková T, Pouch M, Brock JR, Al-Shehbaz IA, Lysak MA (2019) Origin and evolution of diploid and allopolyploid camelina genomes was accompanied by chromosome shattering. Plant Cell 31:2596–2612. https://doi.org/10.1105/tpc.19.00366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants—techniques and applications. Trends Plant Sci 4:258–263. https://doi.org/10.1016/S1360-1385(99)01436-3

    Article  Google Scholar 

  39. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885. https://doi.org/10.1093/nar/7.7.1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang K-D, Fang S-A, Chang F-C, Chung M-C (2010) Chromosomal conservation and sequence diversity of ribosomal RNA genes of two distant Oryza species. Genomics 96:181–190. https://doi.org/10.1016/j.ygeno.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  41. Liu Q, Li XY, Zhou XY, Li MZ, Zhang FJ, Schwarzacher T, Heslop-Harrison JS (2019) The DNA landscape in Avena: chromosome and genome evolution defined by major repetitive DNA classes in whole-genome sequence reads. BMC Plant Biol 19:226. https://doi.org/10.1186/s12870-019-1769-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318. https://doi.org/10.1007/s13353-014-0215-z

    Article  CAS  PubMed  Google Scholar 

  43. Wang Z, Rouard M, Biswas MK, Droc G, Cui D, Roux N, Baurens FC, Ge XJ, Schwarzacher T, Heslop-Harrison PJ, Liu Q (2022) A chromosome-level reference genome of Ensete glaucum gives insight into diversity and chromosomal and repetitive sequence evolution in the Musaceae. GigaScience 11:giac027. https://doi.org/10.1093/gigascience/giac027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Han YH, Zhang T, Thammapichai P, Wen J, Jiang JM (2015) Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200:771–779. https://doi.org/10.1534/genetics.115.177642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Agrawal N, Gupta M, Banga SS, Heslop-Harrison JS (2020) Identification of chromosomes and chromosome rearrangements in crop brassicas and Raphanus sativus: a cytogenetic toolkit using synthesized massive oligonucleotide libraries. Front Plant Sci 11:598039. https://doi.org/10.3389/fpls.2020.598039

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zaki NM, Schwarzacher T, Singh R, Madon M, Wischmeyer C, Hanim Mohd Nor N, Zulkifli MA, Heslop-Harrison JS (2021) Chromosome identification in oil palm (Elaeis guineensis) using in situ hybridization with massive pools of single copy oligonucleotides and transferability across Arecaceae species. Chromosom Res 29:373–390. https://doi.org/10.1007/s10577-021-09675-0

    Article  CAS  Google Scholar 

  47. Heslop-Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F (1999) Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis thaliana chromosomes. Plant Cell 11:31–42. https://doi.org/10.1105/tpc.11.1.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vershinin AV, Schwarzacher T, Heslop-Harrison JS (1995) The large scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7:1823–1833. https://doi.org/10.1105/tpc.7.11.1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Forsström PO, Merker A, Schwarzacher T (2002) Characterisation of mildew resistant wheat-rye substitution lines and identification of an inverted chromosome by fluorescent in situ hybridisation. Heredity 88:349–355. https://doi.org/10.1038/sj.hdy.6800051

    Article  PubMed  Google Scholar 

  50. Ali N, Heslop-Harrison JS, Ahmad H, Graybosch RA, Hein GL, Schwarzacher T (2016) Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance. Heredity 117:114–123. https://doi.org/10.1038/hdy.2016.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wienberg J, Stanyon R, Jauch A, Cremer T (1992) Homolgies in human and Macaca fuscata chromosomes revealed by in situ suppression hybridization with human chromosome specific libraries. Chromosoma 101:256–270. https://doi.org/10.1007/BF00346004

    Article  Google Scholar 

  52. Niemelä T, Seppänen M, Badakshi F, Rokka VM, Heslop-Harrison JS (2012) Size and location of radish chromosome regions carrying the fertility restorer Rfk1 gene in spring turnip rape. Chromosom Res 20:353–361. https://doi.org/10.1007/s10577-012-9280-5

    Article  CAS  Google Scholar 

  53. Mandáková T, Lysak MA (2016) Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Curr Protoc Plant Biol 1:359–371. https://doi.org/10.1002/cppb.20022

    Article  CAS  PubMed  Google Scholar 

  54. Braz GT, He L, Zhao H, Zhang T, Semrau K, Rouillard JM, Torres GA, Jiang J (2018) Comparative Oligo-FISH map**: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208:513–523. https://doi.org/10.1534/genetics.117.300344

    Article  CAS  PubMed  Google Scholar 

  55. Šimoníková D, Němečková A, Čížková J, Brown A, Swennen R, Doležel J, Hřibová E (2020) Chromosome painting in cultivated bananas and their wild relatives (Musa spp.) reveals differences in chromosome structure. Int J Mol Sci 21:7915. https://doi.org/10.3390/ijms21217915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bertioli DJ, Vidigal B, Nielen S, Ratnaparkhe MB, Lee T-H, Leal-Bertioli SCM, Kim C, Guimarães PM, Seijo G, Schwarzacher T, Paterson AH, Heslop-Harrison JS, Araujo ACG (2013) The repetitive component of the A genome of peanut (Arachis hypogaea) and its role in remodeling intergenic sequence space since its evolutionary divergence from the B genome. Ann Bot 112:545–559. https://doi.org/10.1093/aob/mct128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sepsi A, Fábián A, Jäger K, Heslop-Harrison JS, Schwarzacher T (2018) ImmunoFISH: simultaneous visualisation of proteins and DNA sequences gives insight into meiotic processes in nuclei of grasses. Front Plant Sci 9:1193. https://doi.org/10.3389/fpls.2018.01193

    Article  PubMed  PubMed Central  Google Scholar 

  58. Anamthawat-Jonsson K, Heslop-Harrison JS (1993) Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet 240:151–158. https://doi.org/10.1007/BF00277052

    Article  CAS  PubMed  Google Scholar 

  59. Stack SM, Royer SM, Shearer LA, Chang S-B, Giovannoni JJ et al (2009) Role of fluorescence in situ hybridization in sequencing the tomato genome. Cytogenet Genome Res 124:339–350. https://doi.org/10.1159/000218137

    Article  CAS  PubMed  Google Scholar 

  60. Shearer LA, Anderson LK, de Jong H, Smit S, Goicoechea JL, Roe BA, Hua A, Giovannoni JJ, Stack SM (2014) Fluorescence in situ hybridization and optical map** to correct scaffold arrangement in the tomato genome. Genes Genomes Genet 4:1395–1405. https://doi.org/10.1534/g3.114.011197

    Article  Google Scholar 

  61. Paesold S, Borchardt D, Schmidt T, Dechyeva D (2012) A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution. Plant J 72:600–611. https://doi.org/10.1111/j.1365-313X.2012.05102.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the many students, post-docs, visitors, and collaborators over the last 40 years involving us with many different species and questions we were able to ask and answer looking at chromosomes. We acknowledge funding from the Overseas Distinguished Scholar Project of South China Botanical Garden, Chinese Academy of Sciences (Y861041001) to JSHH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trude Schwarzacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schwarzacher, T., Liu, Q., (Pat) Heslop-Harrison, J.S. (2023). Plant Cytogenetics: From Chromosomes to Cytogenomics. In: Heitkam, T., Garcia, S. (eds) Plant Cytogenetics and Cytogenomics. Methods in Molecular Biology, vol 2672. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3226-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3226-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3225-3

  • Online ISBN: 978-1-0716-3226-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation