Copy Number Variation and Allele Ratio Analysis in Candida albicans Using Whole Genome Sequencing Data

  • Protocol
  • First Online:
Antifungal Drug Resistance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2658))

Abstract

Whole genome sequencing of human fungal pathogens has revolutionized the speed and accuracy in which sequence variants that cause antifungal resistance can be identified. Genome rearrangements resulting in copy number variation (CNV) are a significant source of acquired antifungal drug resistance across diverse fungal species. Some CNVs are transient in nature, while other CNVs are stable and well tolerated even in the absence of antifungal drugs. By visualizing whole genome sequencing read depth as a function of genomic location, CNVs and CNV breakpoints (genomic positions where the copy number changes occur relative to the rest of the genome) are rapidly identified. A similar analysis can be used to visualize allele ratio changes that occur across the genomes of heterozygous fungal species, both in the presence and absence of CNVs. This protocol walks through the bioinformatic analysis of CNVs and allele ratios utilizing free, open-source visualization tools. We provide code to use with an example dataset (matched antifungal drug-sensitive and drug-resistant Candida albicans isolates) and notes on how to expand this protocol to other fungal genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 111.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Janbon G, Sherman F, Rustchenko E (1998) Monosomy of a specific chromosome determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans. Proc Natl Acad Sci U A 95:5150–5155

    Article  CAS  Google Scholar 

  2. Dunham MJ, Badrane H, Ferea T et al (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci U A 99:16144–16149

    Article  CAS  Google Scholar 

  3. Selmecki A, Forche A, Berman J (2006) Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313:367–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ford CB, Funt JM, Abbey D et al (2015) The evolution of drug resistance in clinical isolates of Candida albicans. elife 4:e00662

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yang F, Todd RT, Selmecki A et al (2021) The fitness costs and benefits of trisomy of each Candida albicans chromosome. Genetics 218

    Google Scholar 

  6. Marichal P, Vanden Bossche H, Odds FC et al (1997) Molecular biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 41:2229–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fundyga RE, Kuykendall RJ, Lee-Yang W et al (2004) Evidence for aneuploidy and recombination in the human commensal yeast Candida parapsilosis. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis 4:37–43

    Google Scholar 

  8. Demers EG, Biermann AR, Masonjones S et al (2018) Evolution of drug resistance in an antifungal-naive chronic Candida lusitaniae infection. Proc Natl Acad Sci U S A 115:12040–12045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bing J, Hu T, Zheng Q et al (2020) Experimental evolution identifies adaptive aneuploidy as a mechanism of fluconazole resistance in Candida auris. Antimicrob Agents Chemother 65

    Google Scholar 

  10. Sionov E, Lee H, Chang YC et al (2010) Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog 6:e1000848

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hu G, Wang J, Choi J et al (2011) Variation in chromosome copy number influences the virulence of Cryptococcus neoformans and occurs in isolates from AIDS patients. BMC Genomics 12:526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Todd RT, Wikoff TD, Forche A et al (2019) Genome plasticity in Candida albicans is driven by long repeat sequences. elife 8

    Google Scholar 

  13. Selmecki A, Gerami-Nejad M, Paulson C et al (2008) An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol Microbiol 68:624–641

    Article  CAS  PubMed  Google Scholar 

  14. Todd RT, Selmecki A (2020) Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. elife 9

    Google Scholar 

  15. Gresham D, Desai MM, Tucker CM et al (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4:e1000303

    Article  PubMed  PubMed Central  Google Scholar 

  16. Payen C, Di Rienzi SC, Ong GT et al (2014) The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection. G3 Bethesda 4:399–409

    Article  PubMed  Google Scholar 

  17. Adamo GM, Lotti M, Tamas MJ et al (2012) Amplification of the CUP1 gene is associated with evolution of copper tolerance in Saccharomyces cerevisiae. Microbiology 158:2325–2335

    Article  CAS  PubMed  Google Scholar 

  18. Hull RM, Cruz C, Jack CV et al (2017) Environmental change drives accelerated adaptation through stimulated copy number variation. PLoS Biol 15:e2001333

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lauer S, Avecilla G, Spealman P et al (2018) Single-cell copy number variant detection reveals the dynamics and diversity of adaptation. PLoS Biol 16:e3000069

    Article  PubMed  PubMed Central  Google Scholar 

  20. Harrison BD, Hashemi J, Bibi M et al (2014) A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole. PLoS Biol 12:e1001815

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chang FM, Ou TY, Cheng WN et al (2014) Short-term exposure to fluconazole induces chromosome loss in Candida albicans: an approach to produce haploid cells. Fungal Genet Biol 70:68–76

    Article  CAS  PubMed  Google Scholar 

  22. Hickman MA, Paulson C, Dudley A et al (2015) Parasexual ploidy reduction drives population heterogeneity through random and transient aneuploidy in Candida albicans. Genetics 200:781–794

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gerstein AC, Fu MS, Mukaremera L et al (2015) Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation. MBio 6:e01340–e01315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okagaki LH, Strain AK, Nielsen JN et al (2010) Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 6:e1000953

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zaragoza O, Garcia-Rodas R, Nosanchuk JD et al (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6:e1000945

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhu YO, Sherlock G, Petrov DA (2016) Whole genome analysis of 132 clinical Saccharomyces cerevisiae strains reveals extensive ploidy variation. G3 Bethesda 6:2421–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Todd RT, Braverman AL, Selmecki A (2018) Flow cytometry analysis of fungal ploidy. Curr Protoc Microbiol 50:e58

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marr KA, White TC, van Burik JA et al (1997) Development of fluconazole resistance in Candida albicans causing disseminated infection in a patient undergoing marrow transplantation. Clin Infect Dis Off Publ Infect Dis Soc Am 25:908–910

    Article  CAS  Google Scholar 

  29. Marr KA, Lyons CN, Rustad TR et al (1998) Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR. Antimicrob Agents Chemother 42:2584–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marr KA, Lyons CN, Ha K et al (2001) Inducible azole resistance associated with a heterogeneous phenotype in Candida albicans. Antimicrob Agents Chemother 45:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Selmecki AM, Dulmage K, Cowen LE et al (2009) Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet 5:e1000705

    Article  PubMed  PubMed Central  Google Scholar 

  32. Abbey DA, Funt J, Lurie-Weinberger MN et al (2014) YMAP: a pipeline for visualization of copy number variation and loss of heterozygosity in eukaryotic pathogens. Genome Med 6:100

    PubMed  PubMed Central  Google Scholar 

  33. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van der Auwera GA, Carneiro MO, Hartl C et al (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinforma 43:11.10.1-11.10.33

    Google Scholar 

  37. Poplin R, Ruano-Rubio V, DePristo MA, et al (2018) Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv 201178

    Google Scholar 

  38. Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinforma Oxf Engl 27:2156–2158

    Article  CAS  Google Scholar 

  39. García-Alcalde F, Okonechnikov K, Carbonell J et al (2012) Qualimap: evaluating next-generation sequencing alignment data. Bioinforma Oxf Engl 28:2678–2679

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Petra Vande Zande, Natthapon Soisangwan, and Taylor Crooks for providing helpful feedback on the manuscript and to Robin Dowell and her team for providing free and accessible short-read sequence alignment workshops. Funding was provided by the National Institute of Health (R01AI143689) and the Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Diseases (no. 1020388) to A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Selmecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Todd, R.T., Selmecki, A. (2023). Copy Number Variation and Allele Ratio Analysis in Candida albicans Using Whole Genome Sequencing Data. In: Krysan, D.J., Moye-Rowley, W.S. (eds) Antifungal Drug Resistance. Methods in Molecular Biology, vol 2658. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3155-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3155-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3154-6

  • Online ISBN: 978-1-0716-3155-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation