Biophysical Characterization of Membrane Proteins

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2652))

Abstract

Membrane proteins are responsible for a large variety of tasks in organisms and of particular interesting as drug targets. At the same time, they are notoriously difficult to work with and require a thorough characterization before proceeding with structural studies. Here, we present a biophysical pipeline to characterize membrane proteins focusing on the optimization of stability, aggregation behavior, and homogeneity. The pipeline shown here is built on three biophysical techniques: differential scanning fluorimetry using native protein fluorescence (nano differential scanning fluorimetry), dynamic light scattering, and mass photometry. For each of these techniques, we provide detailed protocols for performing experiments and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 169.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Curnow P, Bartolo NDD, Moreton KM et al (2011) Stable folding core in the folding transition state of an α-helical integral membrane protein. Proc Natl Acad Sci U S A 108:14133–14138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Champeil P, Orlowski S, Babin S et al (2016) A robust method to screen detergents for membrane protein stabilization, revisited. Anal Biochem 511:31–35

    Article  CAS  PubMed  Google Scholar 

  3. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681

    Article  CAS  PubMed  Google Scholar 

  4. Sonoda Y, Newstead S, Hu N-J et al (2011) Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure 19:17–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mancusso R, Karpowich NK, Czyzewski BK et al (2011) Simple screening method for improving membrane protein thermostability. Methods 55:324–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hattori M, Hibbs RE, Gouaux E (2012) A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20:1293–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vergis JM, Purdy MD, Wiener MC (2010) A high-throughput differential filtration assay to screen and select detergents for membrane proteins. Anal Biochem 407:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kotov V, Bartels K, Veith K et al (2019) High-throughput stability screening for detergent-solubilized membrane proteins. Sci Rep 9:10379

    Article  PubMed  PubMed Central  Google Scholar 

  9. Parker JL, Newstead S (2016) Membrane protein crystallisation: current trends and future perspectives. In: Advances in experimental medicine and biology. Springer International Publishing, pp 61–72

    Google Scholar 

  10. Alexandrov AI, Mileni M, Chien EYT et al (2008) Microscale fluorescent thermal stability assay for membrane proteins. Structure 16:351–359

    Article  CAS  PubMed  Google Scholar 

  11. Harris NJ, Booth PJ (2012) Folding and stability of membrane transport proteins in vitro. Biochim Biophys Acta 1818:1055–1066

    Article  CAS  PubMed  Google Scholar 

  12. Murphy RM (1997) Static and dynamic light scattering of biological macromolecules: what can we learn? Curr Opin Biotechnol 8:25–30

    Article  CAS  PubMed  Google Scholar 

  13. Raynal B, Lenormand P, Baron B et al (2014) Quality assessment and optimization of purified protein samples: why and how? Microb Cell Factories 13:180

    Article  Google Scholar 

  14. Young G, Hundt N, Cole D et al (2018) Quantitative mass imaging of single biological macromolecules. Science 360:423–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hundt N (2021) Label-free, mass-sensitive single-molecule imaging using interferometric scattering microscopy. Essays Biochem 65:81–91

    Article  PubMed  Google Scholar 

  16. Häußermann K, Young G, Kukura P et al (2019) Dissecting FOXP2 oligomerization and DNA binding. Angew Chem Int Ed 58:7662–7667

    Article  Google Scholar 

  17. Soltermann F, Foley EDB, Pagnoni V et al (2020) Quantifying protein–protein interactions by molecular counting with mass photometry. Angew Chem Int Ed 59:10774–10779

    Article  CAS  Google Scholar 

  18. Wu D, Piszczek G (2020) Measuring the affinity of protein-protein interactions on a single-molecule level by mass photometry. Anal Chem 592:113575

    CAS  Google Scholar 

  19. Olerinyova A, Sonn-Segev A, Gault J et al (2020) Mass photometry of membrane proteins. Chembiochem 7:224–236

    Google Scholar 

  20. Heermann T, Steiert F, Ramm B et al (2021) Mass-sensitive particle tracking (MSPT) to elucidate the membrane-associated MinDE reaction cycle. Nat Methods 18:1239–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steiert F, Heermann T, Hundt N et al (2022) Mass-sensitive particle tracking to characterize membrane-associated macromolecule dynamics. J Vis Exp 180:e63583

    Google Scholar 

  22. Wu D, Piszczek G (2021) Standard protocol for mass photometry experiments. Eur Biophys J 50:403–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burastero O, Niebling S, Defelipe LA et al (2021) eSPC: an online data-analysis platform for molecular biophysics. Acta Cryst D 77:1241–1250

    Article  CAS  Google Scholar 

  24. Kotov V, Mlynek G, Vesper O et al (2021) In-depth interrogation of protein thermal unfolding data with MoltenProt. Protein Sci 30:201–217

    Article  CAS  PubMed  Google Scholar 

  25. Bedouelle H (2016) Principles and equations for measuring and interpreting protein stability: from monomer to tetramer. Biochimie 121:29–37

    Article  CAS  PubMed  Google Scholar 

  26. Mazurenko S, Kunka A, Beerens K et al (2017) Exploration of protein unfolding by modelling calorimetry data from reheating. Sci Rep 7:16321

    Article  PubMed  PubMed Central  Google Scholar 

  27. Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys 57:4814–4820

    Article  CAS  Google Scholar 

  28. Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 27:213–227

    Article  Google Scholar 

  29. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78:1606–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Provencher SW (1982) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242

    Article  Google Scholar 

  31. Zhao H, Schuck P (2012) Global multi-method analysis of affinities and cooperativity in complex systems of macromolecular interactions. Anal Chem 84:9513–9519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Niebling S, Veith K, Vollmer B et al (2022) Biophysical screening pipeline for Cryo-EM grid preparation of membrane proteins. Front Mol Biosci 9:882288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Noble AJ, Dandey VP, Wei H et al (2018) Routine single particle CryoEM sample and grid characterization by tomography. elife 7:e34257

    Article  PubMed  PubMed Central  Google Scholar 

  34. Garcia-Alai MM, Heidemann J, Skruzny M et al (2018) Epsin and Sla2 form assemblies through phospholipid interfaces. Nat Commun 9:328

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lizarrondo J, Klebl DP, Niebling S et al (2021) Structure of the endocytic adaptor complex reveals the basis for efficient membrane anchoring during clathrin-mediated endocytosis. Nat Commun 12:2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María García-Alai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Niebling, S., Burastero, O., García-Alai, M. (2023). Biophysical Characterization of Membrane Proteins. In: Sousa, Â., Passarinha, L. (eds) Advanced Methods in Structural Biology. Methods in Molecular Biology, vol 2652. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3147-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3147-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3146-1

  • Online ISBN: 978-1-0716-3147-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation