Combined FRET-FLIM and NAD(P)H FLIM to Analyze B Cell Receptor Signaling Induced Metabolic Activity of Germinal Center B Cells In Vivo

  • Protocol
  • First Online:
The Immune Synapse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2654))

Abstract

Affinity maturation of B cell clones within germinal centers constitutes an important mechanism for immune memory. During this process, B cell receptor signaling capacity is tested in multiple rounds of positive selection. Antigen stimulation and co-stimulatory signals mobilize calcium to switch on gene expression leading to proliferation and survival and to differentiation into memory B cells and plasma cells. Additionally, all these processes require adaption of B cell metabolism, and calcium signaling and metabolic pathways are closely interlinked. Mitochondrial adaption, ROS production, and NADPH oxidase activation are involved in cell fate decisions, but it remains elusive to what extent, especially because the analysis of these dynamic processes in germinal centers has to take place in vivo. Here, we introduce a quantitative intravital imaging method for combined measurement of cytoplasmic calcium concentration and enzymatic fingerprinting in germinal center B cells as a possible tool in order to further examine the relationship of calcium signaling and immunometabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Choi SC, Morel L (2020) Immune metabolism regulation of the germinal center response. Exp Mol Med 52:348. https://doi.org/10.1038/s12276-020-0392-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shlomchik MJ, Luo W, Weisel F (2019) Linking signaling and selection in the germinal center. Immunol Rev 288:49–63. https://doi.org/10.1111/imr.12744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zeng Q, Zhou Z, Qin S, Yao Y, Qin J, Zhang H, Zhang R, Xu C, Zhang S, Huang S, Chen L (2020) Rapamycin inhibits B-cell activating factor (BAFF)-stimulated cell proliferation and survival by suppressing Ca2+-CaMKII-dependent PTEN/Akt-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells. Cell Calcium 87:102171. https://doi.org/10.1016/j.ceca.2020.102171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kwak K, Akkaya M, Pierce SK (2019) B cell signaling in context. Nat Immunol 20:963. https://doi.org/10.1038/s41590-019-0427-9

    Article  CAS  PubMed  Google Scholar 

  5. Ulbricht C, Leben R, Rakhymzhan A, Kirchhoff F, Nitschke L, Radbruch H, Niesner RA, Hauser AE (2021) Intravital quantification reveals dynamic calcium concentration changes across B cell differentiation stages. elife 10. https://doi.org/10.7554/eLife.56020

  6. Leben R, Köhler M, Radbruch H, Hauser AE, Niesner RA, Leben R, Köhler M, Radbruch H, Anja E, RAN H, Leben R, Köhler M, Radbruch H, Hauser AE, Niesner RA (2019) Systematic enzyme map** of cellular metabolism by phasor-analyzed label-free NAD(P)H fluorescence lifetime imaging. Int J Mol Sci 20:1–19. https://doi.org/10.3390/ijms20225565

    Article  CAS  Google Scholar 

  7. Leben R, Ostendorf L, Van Koppen S, Rakhymzhan A, Hauser AE, Radbruch H, Niesner RA (2018) Phasor-based endogenous NAD(P)H fluorescence lifetime imaging unravels specific enzymatic activity of neutrophil granulocytes preceding NETosis. Int J Mol Sci 19. https://doi.org/10.3390/ijms19041018

  8. Wheeler ML, Defranco AL (2012) Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation. J Immunol 189:4405–4416. https://doi.org/10.4049/jimmunol.1201433

    Article  CAS  PubMed  Google Scholar 

  9. Feng Y-Y, Tang M, Suzuki M, Gunasekara C, Anbe Y, Hiraoka Y, Liu J, Grasberger H, Ohkita M, Matsumura Y, Wang J-Y, Tsubata T (2019) Essential role of NADPH oxidase–dependent production of reactive oxygen species in maintenance of sustained B cell receptor signaling and B cell proliferation. J Immunol 202:2546–2557. https://doi.org/10.4049/jimmunol.1800443

    Article  CAS  PubMed  Google Scholar 

  10. Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421. https://doi.org/10.1038/nrm3801

    Article  CAS  PubMed  Google Scholar 

  11. Tsubata T (2020) Involvement of reactive oxygen species (ROS) in BCR signaling as a second messenger BT. In: Wang J-Y (ed) B cells in immunity and tolerance. Springer Singapore, Singapore, pp 37–46

    Chapter  Google Scholar 

  12. Akkaya M, Traba J, Roesler AS, Miozzo P, Akkaya B, Theall BP, Sohn H, Pena M, Smelkinson M, Kabat J, Dahlstrom E, Dorward DW, Skinner J, Sack MN, Pierce SK (2018) Second signals rescue B cells from activation-induced mitochondrial dysfunction and death. Nat Immunol 19:871–884. https://doi.org/10.1038/s41590-018-0156-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16. https://doi.org/10.1529/biophysj.107.120154

    Article  CAS  PubMed  Google Scholar 

  14. Mank M, Direnberger S, Mrsic-flogel TD, Hofer SB, Ferra A, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Griesbeck O (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811. https://doi.org/10.1038/NMETH.1243

    Article  CAS  PubMed  Google Scholar 

  15. Rickert RC, Roes J, Rajewsky K (1997) B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res 25:1317–1318. https://doi.org/10.1093/nar/25.6.1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ulbricht C, Lindquist RL, Tech LM, Hauser AE (2017) Tracking plasma cell differentiation in living mice with two-photon-microscopy. Methods Mol Biol 1623:37–50. https://doi.org/10.1007/978-1-4939-7095-7_3

    Article  CAS  PubMed  Google Scholar 

  17. Kamala T (2007) Hock immunization: a humane alternative to mouse footpad injections. J Immunol Methods 328:204–214. https://doi.org/10.1016/j.jim.2007.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rinnenthal JL, Börnchen C, Radbruch H, Andresen V, Mossakowski A, Siffrin V, Seelemann T, Spiecker H, Moll I, Herz J, Hauser AE, Zipp F, Behne MJ, Niesner R (2013) Parallelized TCSPC for dynamic Intravital fluorescence lifetime imaging: quantifying neuronal dysfunction in neuroinflammation. PLoS One 8:e60100. https://doi.org/10.1371/journal.pone.0060100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Geiger A, Russo L, Gensch T, Thestrup T, Becker S, Hopfner K-PP, Griesinger C, Witte G, Griesbeck O (2012) Correlating calcium binding, Förster resonance energy transfer, and conformational change in the biosensor TN-XXL. Biophys J 102:2401–2410. https://doi.org/10.1016/j.bpj.2012.03.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frattolin J, Watson DJ, Bonneuil WV, Russell MJ, Fasanella Masci F, Bandara M, Brook BS, Nibbs RJB, Moore JEJ (2021) The critical importance of spatial and temporal scales in designing and interpreting immune cell migration assays. Cell 10. https://doi.org/10.3390/cells10123439

  21. Liublin W, Rausch S, Leben R, Lindquist RL, Fiedler A, Liebeskind J, Beckers IE, Hauser AE, Hartmann S, Niesner RA (2022) NAD(P)H fluorescence lifetime imaging of live intestinal nematodes reveals metabolic crosstalk between parasite and host. Sci Rep 12:7264. https://doi.org/10.1038/s41598-022-10705-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Robert Günther, Ralf Uecker, and Peggy Mex for excellent technical assistance. A.E.H. was supported by Deutsche Forschungsgemeinschaft (DFG) collaborative research grant TRR130, project P17, and by grant HA5354/12-1. A.E.H. and R.A.N. were supported DFG TRR130, project C01 and DFG CRC1444, project 14, and a grant from the Einstein Foundation Berlin (A-2019-559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja E. Hauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ulbricht, C., Leben, R., Cao, Y., Niesner, R.A., Hauser, A.E. (2023). Combined FRET-FLIM and NAD(P)H FLIM to Analyze B Cell Receptor Signaling Induced Metabolic Activity of Germinal Center B Cells In Vivo. In: Baldari, C.T., Dustin, M.L. (eds) The Immune Synapse. Methods in Molecular Biology, vol 2654. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3135-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3135-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3134-8

  • Online ISBN: 978-1-0716-3135-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation