Detection of Z-DNA Structures in Supercoiled Genome

  • Protocol
  • First Online:
Z-DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2651))

  • 906 Accesses

Abstract

Z-DNAs are nucleic acid secondary structures that form within a special pattern of nucleotides and are promoted by DNA supercoiling. Through Z-DNA formation, DNA encodes information by dynamic changes in its secondary structure. A growing body of evidence indicates that Z-DNA formation can play a role in gene regulation; it can affect chromatin architecture and demonstrates its association with genomic instability, genetic diseases, and genome evolution. Many functional roles of Z-DNA are yet to be discovered highlighting the need for techniques to detect genome-wide folding of DNA into this structure. Here, we describe an approach to convert linear genome into supercoiled genome sponsoring Z-DNA formation. Applying permanganate-based methodology and high-throughput sequencing to supercoiled genome allows genome-wide detection of single-stranded DNA. Single-stranded DNA is characteristic of the junctions between the classical B-form of DNA and Z-DNA. Consequently, analysis of single-stranded DNA map provides snapshots of the Z-DNA conformation over the whole genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baranello L, Levens D, Gupta A, Kouzine F (2012) The importance of being supercoiled: how DNA mechanics regulate dynamic processes. Biochim Biophys Acta 1819(7):632–638. https://doi.org/10.1016/j.bbagrm.2011.12.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kouzine F, Levens D (2007) Supercoil-driven DNA structures regulate genetic transactions. Front Biosci 12:4409–4423. https://doi.org/10.2741/2398

    Article  CAS  PubMed  Google Scholar 

  3. Teves SS, Henikoff S (2014) Transcription-generated torsional stress destabilizes nucleosomes. Nat Struct Mol Biol 21(1):88–94. https://doi.org/10.1038/nsmb.2723

    Article  CAS  PubMed  Google Scholar 

  4. Kouzine F, Gupta A, Baranello L, Wojtowicz D, Ben-Aissa K, Liu J, Przytycka TM, Levens D (2013) Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat Struct Mol Biol 20(3):396–403. https://doi.org/10.1038/nsmb.2517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Naughton C, Avlonitis N, Corless S, Prendergast JG, Mati IK, Eijk PP, Cockroft SL, Bradley M, Ylstra B, Gilbert N (2013) Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat Struct Mol Biol 20(3):387–395. https://doi.org/10.1038/nsmb.2509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rich A, Zhang S (2003) Timeline: Z-DNA: the long road to biological function. Nat Rev Genet 4(7):566–572. https://doi.org/10.1038/nrg1115

    Article  CAS  PubMed  Google Scholar 

  7. Ho PS, Ellison MJ, Quigley GJ, Rich A (1986) A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J 5(10):2737–2744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Beknazarov N, ** S, Poptsova M (2020) Deep learning approach for predicting functional Z-DNA regions using omics data. Sci Rep UK 10(1):19134. https://doi.org/10.1038/s41598-020-76203-1

    Article  CAS  Google Scholar 

  9. Zhabinskaya D, Benham CJ (2011) Theoretical analysis of the stress induced B-Z transition in superhelical DNA. PLoS Comput Biol 7(1):e1001051. https://doi.org/10.1371/journal.pcbi.1001051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Zhabinskaya D, Benham CJ (2013) Competitive superhelical transitions involving cruciform extrusion. Nucleic Acids Res 41(21):9610–9621. https://doi.org/10.1093/nar/gkt733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Liu H, Mulholland N, Fu H, Zhao K (2006) Cooperative activity of BRG1 and Z-DNA formation in chromatin remodeling. Mol Cell Biol 26(7):2550–2559. https://doi.org/10.1128/MCB.26.7.2550-2559.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Mulholland N, Xu Y, Sugiyama H, Zhao K (2012) SWI/SNF-mediated chromatin remodeling induces Z-DNA formation on a nucleosome. Cell Biosci 2:3. https://doi.org/10.1186/2045-3701-2-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kouzine F, Wojtowicz D, Baranello L, Yamane A, Nelson S, Resch W, Kieffer-Kwon KR, Benham CJ, Casellas R, Przytycka TM, Levens D (2017) Permanganate/S1 nuclease footprinting reveals non-B DNA structures with regulatory potential across a mammalian genome. Cell Syst 4(3):344–356. e347. https://doi.org/10.1016/j.cels.2017.01.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Edwards SF, Sirito M, Krahe R, Sinden RR (2009) A Z-DNA sequence reduces slipped-strand structure formation in the myotonic dystrophy type 2 (CCTG) x (CAGG) repeat. Proc Natl Acad Sci U S A 106(9):3270–3275. https://doi.org/10.1073/pnas.0807699106

    Article  PubMed Central  PubMed  Google Scholar 

  15. Zhao J, Bacolla A, Wang G, Vasquez KM (2010) Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 67(1):43–62. https://doi.org/10.1007/s00018-009-0131-2

    Article  CAS  PubMed  Google Scholar 

  16. **e KT, Wang G, Thompson AC, Wucherpfennig JI, Reimchen TE, MacColl ADC, Schluter D, Bell MA, Vasquez KM, Kingsley DM (2019) DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 363(6422):81–84. https://doi.org/10.1126/science.aan1425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wittig B, Wolfl S, Dorbic T, Vahrson W, Rich A (1992) Transcription of human c-myc in permeabilized nuclei is associated with formation of Z-DNA in three discrete regions of the gene. EMBO J 11(12):4653–4663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wolfl S, Wittig B, Rich A (1995) Identification of transcriptionally induced Z-DNA segments in the human c-myc gene. Biochim Biophys Acta 1264(3):294–302. https://doi.org/10.1016/0167-4781(95)00155-7

    Article  CAS  PubMed  Google Scholar 

  19. van Holde K, Zlatanova J (1994) Unusual DNA structures, chromatin and transcription. BioEssays 16(1):59–68. https://doi.org/10.1002/bies.950160110

    Article  PubMed  Google Scholar 

  20. Shin SI, Ham S, Park J, Seo SH, Lim CH, Jeon H, Huh J, Roh TY (2016) Z-DNA-forming sites identified by ChIP-Seq are associated with actively transcribed regions in the human genome. DNA Res 23(5):477–486. https://doi.org/10.1093/dnares/dsw031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Li H, **ao J, Li J, Lu L, Feng S, Droge P (2009) Human genomic Z-DNA segments probed by the Z alpha domain of ADAR1. Nucleic Acids Res 37(8):2737–2746. https://doi.org/10.1093/nar/gkp124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wu T, Lyu R, You Q, He C (2020) Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ. Nat Methods 17(5):515–523. https://doi.org/10.1038/s41592-020-0797-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ha SC, Lowenhaupt K, Rich A, Kim YG, Kim KK (2005) Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature 437(7062):1183–1186. https://doi.org/10.1038/nature04088

    Article  CAS  PubMed  Google Scholar 

  24. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F, Manke T (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44(W1):W160–W165. https://doi.org/10.1093/nar/gkw257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cer RZ, Bruce KH, Mudunuri US, Yi M, Volfovsky N, Luke BT, Bacolla A, Collins JR, Stephens RM (2011) Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res 39(Database issue):D383–D391. https://doi.org/10.1093/nar/gkq1170

    Article  CAS  PubMed  Google Scholar 

  28. Anders S, Pyl PT, Huber W (2015) HTSeq – a python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169. https://doi.org/10.1093/bioinformatics/btu638

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedor Kouzine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kouzine, F., Wojtowicz, D., Przytycka, T.M., Levens, D. (2023). Detection of Z-DNA Structures in Supercoiled Genome. In: Kim, K.K., Subramani, V.K. (eds) Z-DNA. Methods in Molecular Biology, vol 2651. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3084-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3084-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3083-9

  • Online ISBN: 978-1-0716-3084-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation