Modeling Notch Activity and Lineage Decisions Using Intestinal Organoids

  • Protocol
  • First Online:
Intestinal Differentiated Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2650))

  • 1116 Accesses

Abstract

Organoid cultures have been developed to model intestinal stem cell (ISC) function in self-renewal and differentiation. Upon differentiation, the first fate decision for ISC and early progenitors to make is between secretory (Paneth cell, goblet cell, enteroendocrine cell, or tuft cell) and absorptive (enterocyte and M cell) lineages. Using genetic and pharmacological approaches, in vivo studies in the past decade have revealed that Notch signaling functions as a binary switch for the secretory vs. absorptive lineage decision in adult intestine. Recent breakthroughs in organoid-based assays enable real-time observation of smaller-scale and higher-throughput experiments in vitro, which have begun contributing to new understandings of mechanistic principles underlying intestinal differentiation. In this chapter, we summarize the in vivo and in vitro tools for modulating Notch signaling and assess its impact on intestinal cell fate. We also provide example protocols of how to use intestinal organoids as functional assays to study Notch activity in intestinal lineage decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 163.51
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barker N, van Oudenaarden A, Clevers H (2012) Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 11(4):452–460. https://doi.org/10.1016/j.stem.2012.09.009

  2. Pellegrinet L, Rodilla V, Liu Z, Chen S, Koch U, Espinosa L, Kaestner KH, Kopan R, Lewis J, Radtke F (2011) Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 140(4):1230–1240. e1231–1237. https://doi.org/10.1053/j.gastro.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  3. Demitrack ES, Gifford GB, Keeley TM, Carulli AJ, VanDussen KL, Thomas D, Giordano TJ, Liu Z, Kopan R, Samuelson LC (2015) Notch signaling regulates gastric antral LGR5 stem cell function. EMBO J 34(20):2522–2536. https://doi.org/10.15252/embj.201490583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsai YH, VanDussen KL, Sawey ET, Wade AW, Kasper C, Rakshit S, Bhatt RG, Stoeck A, Maillard I, Crawford HC, Samuelson LC, Dempsey PJ (2014) ADAM10 regulates Notch function in intestinal stem cells of mice. Gastroenterology 147(4):822–834 e813. https://doi.org/10.1053/j.gastro.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  5. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435(7044):959–963. https://doi.org/10.1038/nature03659

    Article  CAS  PubMed  Google Scholar 

  6. Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U, Strobl LJ, Honjo T, Clevers H, Radtke F (2008) Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9(4):377–383. https://doi.org/10.1038/embor.2008.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fre S, Hannezo E, Sale S, Huyghe M, Lafkas D, Kissel H, Louvi A, Greve J, Louvard D, Artavanis-Tsakonas S (2011) Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice. PLoS One 6(10):e25785. https://doi.org/10.1371/journal.pone.0025785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Basak O, Beumer J, Wiebrands K, Seno H, van Oudenaarden A, Clevers H (2017) Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell 20(2):177–190 e174. https://doi.org/10.1016/j.stem.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  9. Heuberger J, Kosel F, Qi J, Grossmann KS, Rajewsky K, Birchmeier W (2014) Shp2/MAPK signaling controls goblet/paneth cell fate decisions in the intestine. Proc Natl Acad Sci U S A 111(9):3472–3477. https://doi.org/10.1073/pnas.1309342111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kober OI, Ahl D, Pin C, Holm L, Carding SR, Juge N (2014) Gammadelta T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer. Am J Physiol Gastrointest Liver Physiol 306(7):G582–G593. https://doi.org/10.1152/ajpgi.00218.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yin X, Farin HF, van Es JH, Clevers H, Langer R, Karp JM (2014) Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods 11(1):106–112. https://doi.org/10.1038/nmeth.2737

    Article  CAS  PubMed  Google Scholar 

  12. Gracz AD, Samsa LA, Fordham MJ, Trotier DC, Zwarycz B, Lo YH, Bao K, Starmer J, Raab JR, Shroyer NF, Reinhardt RL, Magness ST (2018) Sox4 promotes Atoh1-independent intestinal secretory differentiation toward tuft and enteroendocrine fates. Gastroenterology 155(5):1508–1523. e1510. https://doi.org/10.1053/j.gastro.2018.07.023

    Article  CAS  PubMed  Google Scholar 

  13. de Lau W, Kujala P, Schneeberger K, Middendorp S, Li VS, Barker N, Martens A, Hofhuis F, DeKoter RP, Peters PJ, Nieuwenhuis E, Clevers H (2012) Peyer's patch M cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured “miniguts”. Mol Cell Biol 32(18):3639–3647. https://doi.org/10.1128/MCB.00434-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, Tripathi S, Calibasi-Kocal G, Rickelt S, Butty VL, Moreno-Serrano M, Iqbal AM, Bauer-Rowe KE, Imada S, Ulutas MS, Mylonas C, Whary MT, Levine SS, Basbinar Y, Hynes RO, Mino-Kenudson M, Deshpande V, Boyer LA, Fox JG, Terranova C, Rai K, Piwnica-Worms H, Mihaylova MM, Regev A, Yilmaz OH (2019) Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell 178(5):1115–1131 e1115. https://doi.org/10.1016/j.cell.2019.07.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lim JS, Ibaseta A, Fischer MM, Cancilla B, O'Young G, Cristea S, Luca VC, Yang D, Jahchan NS, Hamard C, Antoine M, Wislez M, Kong C, Cain J, Liu YW, Kapoun AM, Garcia KC, Hoey T, Murriel CL, Sage J (2017) Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature 545(7654):360–364. https://doi.org/10.1038/nature22323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng CW, Yilmaz OH, Mihaylova MM (2020) Strategies for measuring induction of fatty acid oxidation in intestinal stem and progenitor cells. Methods Mol Biol 2171:53–64. https://doi.org/10.1007/978-1-0716-0747-3_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Powell RH, Behnke MS (2017) WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals. Biol Open 6(5):698–705. https://doi.org/10.1242/bio.021717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clinton J, McWilliams-Koeppen P (2019) Initiation, expansion, and cryopreservation of human primary tissue-derived normal and diseased organoids in embedded three-dimensional culture. Curr Protoc Cell Biol 82(1):e66. https://doi.org/10.1002/cpcb.66

    Article  CAS  PubMed  Google Scholar 

  19. Boonekamp KE, Dayton TL, Clevers H (2020) Intestinal organoids as tools for enriching and studying specific and rare cell types: advances and future directions. J Mol Cell Biol 12(8):562–568. https://doi.org/10.1093/jmcb/mjaa034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwank G, Andersson-Rolf A, Koo BK, Sasaki N, Clevers H (2013) Generation of BAC transgenic epithelial organoids. PLoS One 8(10):e76871. https://doi.org/10.1371/journal.pone.0076871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Wei Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Qiu, Y., Phanor, S.K., Pyo, S., Cheng, CW. (2023). Modeling Notch Activity and Lineage Decisions Using Intestinal Organoids. In: Ordóñez-Morán, P. (eds) Intestinal Differentiated Cells. Methods in Molecular Biology, vol 2650. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3076-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3076-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3075-4

  • Online ISBN: 978-1-0716-3076-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation