Cell Viability Multiplexing: Quantification of Cellular Viability by Barcode Flow Cytometry and Computational Analysis

  • Protocol
  • First Online:
Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2644))

  • 1452 Accesses

Abstract

Fluorescent cell barcoding (FCB) is a useful flow cytometric technique for high-throughput multiplexed analyses and can minimize technical variations after preliminary optimization and validation of protocols. To date, FCB is widely used for measurement of phosphorylation status of certain proteins, while it can be also employed for cellular viability assessment. In this chapter, we describe the protocol to perform FCB combined with viability assessment on lymphocytes and monocytes using manual and computational analysis. We also provide recommendations for FCB protocol optimization and validation for clinical sample analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3:361–368

    Article  CAS  PubMed  Google Scholar 

  2. Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A 55:61–70

    Article  PubMed  Google Scholar 

  3. Krutzik PO, Crane JM, Clutter MR, Nolan GP (2008) High-content single-cell drug screening with phosphospecific flow cytometry. Nat Chem Biol 4:132–142

    Article  CAS  PubMed  Google Scholar 

  4. Kalland ME, Oberprieler NG, Vang T, Taskén K, Torgersen KM (2011) T cell-signaling network analysis reveals distinct differences between CD28 and CD2 costimulation responses in various subsets and in the MAPK pathway between resting and activated regulatory T cells. J Immunol 187:5233–5245

    Article  CAS  PubMed  Google Scholar 

  5. Spurgeon BE, Aburima A, Oberprieler NG, Taskén K, Naseem KM (2014) Multiplexed phosphospecific flow cytometry enables large-scale signaling profiling and drug screening in blood platelets. J Thromb Haemost 12:1733–1743

    Article  CAS  PubMed  Google Scholar 

  6. Davies R, Vogelsang P, Jonsson R, Appel S (2016) An optimized multiplex flow cytometry protocol for the analysis of intracellular signaling in peripheral blood mononuclear cells. J Immunol Methods 436:58–63

    Article  CAS  PubMed  Google Scholar 

  7. Tsai WL, Vian L, Giudice V, Kieltyka J, Liu C, Fonseca V, Gazaniga N, Gao S, Kajigaya S, Young NS, Biancotto A, Gadina M (2020) High throughput pSTAT signaling profiling by fluorescent cell barcoding and computational analysis. J Immunol Methods 477:112667

    Article  CAS  PubMed  Google Scholar 

  8. Manohar S, Shah P, Biswas S, Mukadam A, Joshi M, Viswanathan G (2019) Combining fluorescent cell barcoding and flow cytometry-based phospho-ERK1/2 detection at short time scales in adherent cells. Cytometry A 95(2):192–200

    Article  CAS  PubMed  Google Scholar 

  9. Stam J, Abdulahad W, Huitema MG et al (2011) Fluorescent cell barcoding as a tool to assess the age-related development of intracellular cytokine production in small amounts of blood from infants. PLoS One 6(10):e25690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prussin C, Metcalfe DD (1995) Detection of intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies. J Immunol Methods 188:117–128

    Article  CAS  PubMed  Google Scholar 

  11. Giudice V, Feng X, Kajigaya S, Young NS, Biancotto A (2017) Optimization and standardization of fluorescent cell barcoding for multiplexed flow cytometric phenoty**. Cytometry A 91(7):694–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Giudice V, Fantoni G, Biancotto A (2019) Fluorescent cell barcoding for Immunophenoty**. Methods Mol Biol 2032:53–68

    Article  CAS  PubMed  Google Scholar 

  13. Gao S, Wu Z, Arnold B, Diamond C, Batchu S, Giudice V, Alemu L, Raffo DQ, Feng X, Kajigaya S, Barrett J, Ito S, Young NS (2022) Single-cell RNA sequencing coupled to TCR profiling of large granular lymphocyte leukemia T cells. Nat Commun 13(1):1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu Y, Biancotto A, Cheung F, Remmers E, Shah N, McCoy JP, Tsang JS (2016) Systematic analysis of cell-to-cell expression variation of T lymphocytes in a human cohort identifies aging and genetic associations. Immunity 45(5):1162–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Finak G, Langweiler M, Jaimes M et al (2016) Standardizing flow cytometry immunophenoty** analysis from the human immunophenoty** consortium. Sci Rep 6:20686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saeys Y, Gassen SV, Lambrecht BN (2016) Computational flow cytometry: hel** to make sense of high-dimensional immunology data. Nat Rev Immunol 16(7):449–462

    Article  CAS  PubMed  Google Scholar 

  17. Aghaeepour N, Finak G; FlowCAP Consortium et al (2013) Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 10(3):228–238

    Article  Google Scholar 

  18. Hu Z, Jujjavarapu C, Hughey JJ et al (2018) MetaCyto: a tool for automated meta-analysis of mass and flow cytometry data. Cell Rep 24(5):1377–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reisman BJ, Barone SM, Bachmann BO, Irish JM (2021) DebarcodeR increases fluorescent cell barcoding capacity and accuracy. Cytometry A 99(9):946–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perfetto SP, Chattopadhyay PK, Lamoreaux L, Nguyen R, Ambrozak D, Koup RA, Roederer M (2010) Amine-reactive dyes for dead cell discrimination in fixed samples. Curr Protoc Cytom Chapter 9:Unit 9.34

    Google Scholar 

  21. Perfetto SP, Chattopadhyay PK, Lamoreaux L, Nguyen R, Ambrozak D, Koup RA, Roederer M (2006) Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J Immunol Methods 313(1–2):199–208

    Article  CAS  PubMed  Google Scholar 

  22. Johnson S, Nguyen V, Coder D (2013) Assessment of cell viability. Curr Protoc Cytom Chapter 9: Unit9.2

    Google Scholar 

  23. Lekishvili T, Campbell JJ (2018) Rapid comparative immunophenoty** of human mesenchymal stromal cells by a modified fluorescent cell barcoding flow cytometric assay. Cytometry A 93(9):905–915

    Article  CAS  PubMed  Google Scholar 

  24. Krutzik PO, Clutter MR, Trejo A, Nolan GP (2011) Fluorescent cell barcoding for multiplex flow cytometry. Curr Protoc Cytom Chapter 6:Unit 6.31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentina Giudice or Massimo Gadina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Giudice, V., Fonseca, V., Selleri, C., Gadina, M. (2023). Cell Viability Multiplexing: Quantification of Cellular Viability by Barcode Flow Cytometry and Computational Analysis. In: Friedrich, O., Gilbert, D.F. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 2644. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3052-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3052-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3051-8

  • Online ISBN: 978-1-0716-3052-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation