Second Harmonic Generation Morphometry of Muscle Cytoarchitecture in Living Cells

  • Protocol
  • First Online:
Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2644))

  • 1421 Accesses

Abstract

The architectural structure of cells is essential for the cells’ function, which becomes especially apparent in the highly “structure functionally” tuned skeletal muscle cells. Here, structural changes in the microstructure can have a direct impact on performance parameters, such as isometric or tetanic force production. The microarchitecture of the actin-myosin lattice in muscle cells can be detected noninvasively in living cells and in 3D by using second harmonic generation (SHG) microscopy, forgoing the need to alter samples by introducing fluorescent probes into them. Here, we provide tools and step-by-step protocols to guide the processes of obtaining SHG microscopy image data from samples, as well as extracting characteristic values from the image data to quantify the cellular microarchitecture using characteristic patterns of myofibrillar lattice alignments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berchtold MW, Brinkmeier H, Müntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265. https://doi.org/10.1152/physrev.2000.80.3.1215

    Article  CAS  PubMed  Google Scholar 

  2. Bröllochs A (2018) Dissection of mouse EDL and soleus muscles. Protocols.Io. https://doi.org/10.17504/protocols.io.jcrciv6

  3. Buttgereit A, Weber C, Friedrich O (2014) A novel quantitative morphometry approach to assess regeneration in dystrophic skeletal muscle. Neuromuscul Disord 24:596–603. https://doi.org/10.1016/j.nmd.2014.04.011

    Article  PubMed  Google Scholar 

  4. Buttgereit A, Weber C, Garbe CS, Friedrich O (2013) From chaos to split-ups – SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle: Remodelling of dystrophic muscle. J Pathol 229:477–485. https://doi.org/10.1002/path.4136

    Article  PubMed  Google Scholar 

  5. Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75:2015–2024. https://doi.org/10.1016/S0006-3495(98)77643-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Franzini-Armstrong C (2015) Electron microscopy: from 2D to 3D images with special reference to muscle. Eur J Transl Myol 25:4836. https://doi.org/10.4081/ejtm.2015.4836

    Article  PubMed  PubMed Central  Google Scholar 

  7. Friedrich O, Both M, Weber C, Schürmann S, Teichmann MDH, von Wegner F, Fink RHA, Vogel M, Chamberlain JS, Garbe C (2010) Microarchitecture is severely compromised but motor protein function is preserved in dystrophic mdx skeletal muscle. Biophys J 98:606–616. https://doi.org/10.1016/j.bpj.2009.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garbe CS, Buttgereit A, Schürmann S, Friedrich O (2012) Automated multiscale morphometry of muscle disease from second harmonic generation microscopy using tensor-based image processing. IEEE Trans Biomed Eng 59:39–44. https://doi.org/10.1109/TBME.2011.2167325

    Article  PubMed  Google Scholar 

  9. Gu M, Gan X, Kisteman A, Xu MG (2000) Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media. Appl Phys Lett 77:1551–1553. https://doi.org/10.1063/1.1308059

    Article  CAS  Google Scholar 

  10. Haug M, Ritter P, Michael M, Reischl B, Schürmann S, Prölß G, Friedrich O (2022) Structure-function relationships in muscle Fibres: MyoRobot online assessment of muscle fibre elasticity and sarcomere length distributions. IEEE Trans Biomed Eng 69:148–155. https://doi.org/10.1109/TBME.2021.3089739

    Article  PubMed  Google Scholar 

  11. Kiriaev L, Kueh SLL, Morley JW, North KN, Houweling PJ, Head SI (2018) Branched fibers from old fast-twitch dystrophic muscles are the sites of terminal damage in muscular dystrophy. Am J Physiol: Cell Physiol:C662–C674. https://doi.org/10.1152/ajpcell.00161.2017

  12. Liu W, Ralston E, Raben N (2013) Quantitative evaluation of skeletal muscle defects in second harmonic generation images. J Biomed Opt 18:026005. https://doi.org/10.1117/1.JBO.18.2.026005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lovering RM, Michaelson L, Ward CW (2009) Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling. Am J Phys Cell Phys 297:C571–C580. https://doi.org/10.1152/ajpcell.00087.2009

    Article  CAS  Google Scholar 

  14. Lovering RM, O’Neill A, Muriel JM, Prosser BL, Strong J, Bloch RJ (2011) Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments. Am J Phys Cell Phys 300:C803–C813. https://doi.org/10.1152/ajpcell.00394.2010

    Article  CAS  Google Scholar 

  15. Mohler W, Millard AC, Campagnola PJ (2003) Second harmonic generation imaging of endogenous structural proteins. Methods 29:97–109. https://doi.org/10.1016/S1046-2023(02)00292-X

    Article  CAS  PubMed  Google Scholar 

  16. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465. https://doi.org/10.1093/bioinformatics/btp184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  18. Schneidereit D, Bröllochs A, Ritter P, Kreiß L, Mokhtari Z, Beilhack A, Krönke G, Ackermann JA, Faas M, Grüneboom A (2021) An advanced optical clearing protocol allows label-free detection of tissue necrosis via multiphoton microscopy in injured whole muscle. Theranostics 11:2876. https://doi.org/10.7150/thno.51558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schneidereit D, Nübler S, Prölß G, Reischl B, Schürmann S, Müller OJ, Friedrich O (2018) Optical prediction of single muscle fiber force production using a combined biomechatronics and second harmonic generation imaging approach. Light: Sci Appl 7:79. https://doi.org/10.1038/s41377-018-0080-3

    Article  CAS  PubMed  Google Scholar 

  20. Schürmann S, von Wegner F, Fink RHA, Friedrich O, Vogel M (2010) Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils. Biophys J 99:1842–1851. https://doi.org/10.1016/j.bpj.2010.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Schneidereit .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schneidereit, D., Nübler, S., Friedrich, O. (2023). Second Harmonic Generation Morphometry of Muscle Cytoarchitecture in Living Cells. In: Friedrich, O., Gilbert, D.F. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 2644. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3052-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3052-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3051-8

  • Online ISBN: 978-1-0716-3052-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation