Assaying Mitochondrial Respiration as an Indicator of Cellular Metabolism and Fitness

  • Protocol
  • First Online:
Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2644))

  • 1702 Accesses

Abstract

Mitochondrial respiration is an essential component of cellular metabolism. It is a process of energy conversion through enzymatically mediated reactions, the energy of taken-up substrates transformed to the ATP production. Seahorse equipment allows to measure oxygen consumption in living cells and estimate key parameters of mitochondrial respiration in real-time mode. Four key mitochondrial respiration parameters could be measured: basal respiration, ATP-production coupled respiration, maximal respiration, and proton leak. This approach demands the application of mitochondrial inhibitors—oligomycin to inhibit ATP synthase, FCCP—to uncouple the inner mitochondrial membrane and allow maximum electron flux through the electron transport chain, rotenone, and antimycin A to inhibit complexes I and III, respectively. This chapter describes two protocols of seahorse measurements performed on iPSC-derived cardiomyocytes and TAZ knock-out C2C12 cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

iPSC-CM:

iPSC-derived cardiomyocytes

KO:

Knock-out cells

OCR:

Oxygen consumption rate

WT:

Wild type

References

  1. Hargreaves M, Spriet LL (2020) Skeletal muscle energy metabolism during exercise. Nat Metab 2:817–828. https://doi.org/10.1038/s42255-020-0251-4

    Article  CAS  PubMed  Google Scholar 

  2. Hood DA, Memme JM, Oliveira AN, Triolo M (2019) Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol 81:19–41. https://doi.org/10.1146/annurev-physiol-020518-114310

    Article  CAS  PubMed  Google Scholar 

  3. Ignatieva E, Smolina N, Kostareva A, Dmitrieva R (2021) Skeletal muscle mitochondria dysfunction in genetic neuromuscular disorders with cardiac phenotype. Int J Mol Sci 22:7349. https://doi.org/10.3390/ijms22147349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giacomelli E, Mummery CL, Bellin M (2017) Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes. Cell Mol Life Sci 74:3711–3739. https://doi.org/10.1007/s00018-017-2546-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brodehl A, Ebbinghaus H, Deutsch MA et al (2019) Human induced pluripotent stem-cell-derived cardiomyocytes as models for genetic cardiomyopathies. Int J Mol Sci 20:4381. https://doi.org/10.3390/ijms20184381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomas D, Cunningham NJ, Shenoy S, Wu JC (2022) Human-induced pluripotent stem cells in cardiovascular research: current approaches in cardiac differentiation, maturation strategies, and scalable production. Cardiovasc Res 118:20–36. https://doi.org/10.1093/cvr/cvab115

    Article  CAS  PubMed  Google Scholar 

  7. Tanosaki S, Tohyama S, Kishino Y et al (2021) Metabolism of human pluripotent stem cells and differentiated cells for regenerative therapy: a focus on Cardiomyocytes. Inflamm Regen 41:5. https://doi.org/10.1186/s41232-021-00156-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Feyen DAM, McKeithan WL, Bruyneel AAN et al (2020) Metabolic maturation media improve physiological function of human IPSC-derived cardiomyocytes. Cell Rep 32:107925. https://doi.org/10.1016/j.celrep.2020.107925

    Article  CAS  PubMed  Google Scholar 

  9. Horikoshi Y, Yan Y, Terashvili M, Wells C et al (2019) Fatty acid-treated induced pluripotent stem cell-derived human cardiomyocytes exhibit adult cardiomyocyte-like energy metabolism phenotypes. Cell 8:1095. https://doi.org/10.3390/cells8091095

    Article  CAS  Google Scholar 

  10. Yang X, Rodriguez ML, Leonard A et al (2019) Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Rep 13:657–668. https://doi.org/10.1016/j.stemcr.2019.08.013

    Article  CAS  Google Scholar 

  11. Stocco A, Smolina N, Sabatelli P et al (2021) Treatment with a triazole inhibitor of the mitochondrial permeability transition pore fully corrects the pathology of sapje zebrafish lacking dystrophin. Pharmacol Res 165:105421. https://doi.org/10.1016/j.phrs.2021.105421

    Article  CAS  PubMed  Google Scholar 

  12. Lian X, Hsiao C, Wilson G et al (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109. https://doi.org/10.1073/pnas.1200250109

  13. Tohyama S, Hattori F, Sano M et al (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12:127–137. https://doi.org/10.1016/j.stem.2012.09.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Russian Scientific Foundation grant number 20-15-00271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Smolina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smolina, N., Khudiakov, A., Kostareva, A. (2023). Assaying Mitochondrial Respiration as an Indicator of Cellular Metabolism and Fitness. In: Friedrich, O., Gilbert, D.F. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 2644. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3052-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3052-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3051-8

  • Online ISBN: 978-1-0716-3052-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation