Estimating the Interaction Strength Between PTS1-Peptides and Their Receptor PEX5 in Living Cells Using Flow-Cytometer-Based FRET (flowFRET) Measurements

  • Protocol
  • First Online:
Peroxisomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2643))

  • 733 Accesses

Abstract

The import of many peroxisomal matrix proteins is initiated by the interaction of type-1 peroxisomal targeting signals (PTS1) residing at the extreme C-terminus of cargo proteins and their receptor protein PEX5. This interaction has been amply investigated by biophysical methods using isolated proteins and peptides or heterologous systems such as two-hybrid assays. However, a recently developed novel application of Fluorescence resonance energy transfer (FRET) allows a quantifying measurement of this interaction in living cells. This method combines the systematic measurement of FRET-efficiency in a high number of cells with a well-suited normalization protocol and a fitting algorithm, which together allow the estimation of numerical values for the apparent interaction strength that correlates with other measures of binding strength but can be obtained under rather physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta 1763(12):1565–1573. https://doi.org/10.1016/j.bbamcr.2006.08.022

    Article  CAS  PubMed  Google Scholar 

  2. Kunze M (2020) The type-2 peroxisomal targeting signal. Biochim Biophys Acta, Mol Cell Res 1867(2):118609. https://doi.org/10.1016/j.bbamcr.2019.118609

    Article  CAS  Google Scholar 

  3. Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F (2003) Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J Mol Biol 328(3):581–592. https://doi.org/10.1016/s0022-2836(03)00319-x

    Article  CAS  PubMed  Google Scholar 

  4. Reumann S (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol 135(2):783–800. https://doi.org/10.1104/pp.103.035584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Notzel C, Lingner T, Klingenberg H, Thoms S (2016) Identification of new fungal peroxisomal matrix proteins and revision of the PTS1 consensus. Traffic 17(10):1110–1124. https://doi.org/10.1111/tra.12426

    Article  CAS  PubMed  Google Scholar 

  6. Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S (1989) A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108(5):1657–1664. https://doi.org/10.1083/jcb.108.5.1657

    Article  CAS  PubMed  Google Scholar 

  7. Cross LL, Paudyal R, Kamisugi Y, Berry A, Cuming AC, Baker A, Warriner SL (2017) Towards designer organelles by subverting the peroxisomal import pathway. Nat Commun 8(1):454. https://doi.org/10.1038/s41467-017-00487-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lametschwandtner G, Brocard C, Fransen M, Van Veldhoven P, Berger J, Hartig A (1998) The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it. J Biol Chem 273(50):33635–33643. https://doi.org/10.1074/jbc.273.50.33635

    Article  CAS  PubMed  Google Scholar 

  9. Kunze M (2018) Predicting peroxisomal targeting signals to elucidate the peroxisomal proteome of mammals. Subcell Biochem 89:157–199. https://doi.org/10.1007/978-981-13-2233-4_7

    Article  CAS  PubMed  Google Scholar 

  10. Ghosh D, Berg JM (2010) A proteome-wide perspective on peroxisome targeting signal 1(PTS1)-Pex5p affinities. J Am Chem Soc 132(11):3973–3979. https://doi.org/10.1021/ja9109049

    Article  CAS  PubMed  Google Scholar 

  11. Hochreiter B, Chong C-S, Hartig A, Maurer-Stroh S, Berger J, Schmid JA, Kunze M (2020) A novel FRET approach quantifies the interaction strength of peroxisomal targeting signals and their receptor in living cells. Cell 9(11):2381

    Article  CAS  Google Scholar 

  12. Bunt G, Wouters FS (2017) FRET from single to multiplexed signaling events. Biophys Rev 9(2):119–129. https://doi.org/10.1007/s12551-017-0252-z

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hochreiter B, Garcia AP, Schmid JA (2015) Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Sensors (Basel) 15(10):26281–26314. https://doi.org/10.3390/s151026281

    Article  CAS  PubMed  Google Scholar 

  14. Okamoto K, Sako Y (2017) Recent advances in FRET for the study of protein interactions and dynamics. Curr Opin Struct Biol 46:16–23. https://doi.org/10.1016/j.sbi.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  15. Hochreiter B, Kunze M, Moser B, Schmid JA (2019) Advanced FRET normalization allows quantitative analysis of protein interactions including stoichiometries and relative affinities in living cells. J Sci Rep 9(8233):1–16. https://doi.org/10.1038/s41598-019-44650-0

    Article  CAS  Google Scholar 

  16. Baes M, Gressens P, Baumgart E, Carmeliet P, Casteels M, Fransen M, Evrard P, Fahimi D, Declercq PE, Collen D, van Veldhoven PP, Mannaerts GP (1997) A mouse model for Zellweger syndrome. Nat Genet 17(1):49–57. https://doi.org/10.1038/ng0997-49

    Article  CAS  PubMed  Google Scholar 

  17. Nagy P, Bene L, Hyun WC, Vereb G, Braun M, Antz C, Paysan J, Damjanovich S, Park JW, Szollosi J (2005) Novel calibration method for flow cytometric fluorescence resonance energy transfer measurements between visible fluorescent proteins. Cytometry A 67(2):86–96. https://doi.org/10.1002/cyto.a.20164

    Article  CAS  PubMed  Google Scholar 

  18. Chong CS, Kunze M, Hochreiter B, Krenn M, Berger J, Maurer-Stroh S (2019) Rare human missense variants can affect the function of disease-relevant proteins by loss and gain of peroxisomal targeting motifs. Int J Mol Sci 20(18). https://doi.org/10.3390/ijms20184609

  19. Bajar BT, Wang ES, Zhang S, Lin MZ, Chu J (2016) A guide to fluorescent protein FRET pairs. Sensors (Basel) 16(9). https://doi.org/10.3390/s16091488

  20. Malkani N, Schmid JA (2011) Some secrets of fluorescent proteins: distinct bleaching in various mounting fluids and photoactivation of cyan fluorescent proteins at YFP-excitation. PLoS One 6(4):e18586. https://doi.org/10.1371/journal.pone.0018586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Youvan DC, Silva CM, Bylina EJ, Coleman WJ, Dilworth MR, Yang MM (1997) Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivates on nickel chelating beads. Biotechnology 3:1–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernhard Hochreiter or Markus Kunze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hochreiter, B., Schmid, J.A., Berger, J., Kunze, M. (2023). Estimating the Interaction Strength Between PTS1-Peptides and Their Receptor PEX5 in Living Cells Using Flow-Cytometer-Based FRET (flowFRET) Measurements. In: Schrader, M. (eds) Peroxisomes. Methods in Molecular Biology, vol 2643. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3048-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3048-8_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3047-1

  • Online ISBN: 978-1-0716-3048-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation