State of the Art Procedures for the Isolation and Characterization of Mesoangioblasts

  • Protocol
  • First Online:
Skeletal Muscle Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2640))

Abstract

Adult skeletal muscle is a dynamic tissue able to regenerate quite efficiently, thanks to the presence of stem cell machinery. Besides the quiescent satellite cells that are activated upon injury or paracrine factors, other stem cells are described to be directly or indirectly involved in adult myogenesis. Mesoangioblasts (MABs) are vessel-associated stem cells originally isolated from embryonic dorsal aorta and, at later stages, from the adult muscle interstitium expressing pericyte markers. Adult MABs entered clinical trials for the treatment of Duchenne muscular dystrophy and the transcriptome of human fetal MABs has been described. In addition, single cell RNA-seq analyses provide novel information on adult murine MABs and more in general in interstitial muscle stem cells. This chapter provides state-of-the-art techniques to isolate and characterize murine MABs, fetal and adult human MABs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuang S, Kuroda K, Le Grand F et al (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cossu G, Biressi S (2005) In seminars in cell & developmental biology. (Elsevier) 16:623–631

    Google Scholar 

  3. Cassano M, Quattrocelli M, Crippa S et al (2009) Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass. J Muscle Res Cell Motil 30(7–8):243–253

    Article  PubMed  Google Scholar 

  4. Agosti E, De Feudis M, Angelino E et al (2020) Both ghrelin deletion and unacylated ghrelin overexpression preserve muscles in aging mice. Aging (Albany NY) 12(14):13939–13957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ronzoni F, Ceccarelli G, Perini I et al (2017) Met-activating genetically improved chimeric factor-1 promotes angiogenesis and hypertrophy in adult Myogenesis. Curr Pharm Biotechnol 18(4):309–317

    Article  CAS  PubMed  Google Scholar 

  6. Dellavalle A, Sampaolesi M, Tonlorenzi R et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267

    Article  CAS  PubMed  Google Scholar 

  7. Dellavalle A, Maroli G, Covarello D et al (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499

    Article  CAS  PubMed  Google Scholar 

  8. Quattrocelli M, Costamagna D, Giacomazzi G et al (2014) Notch signaling regulates myogenic regenerative capacity of murine and human mesoangioblasts. Cell Death Dis 5(10):e1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Costamagna D, Quattrocelli M, van Tienen F et al (2016) Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts. J Mol Cell Biol 8(1):73–87

    Article  CAS  PubMed  Google Scholar 

  10. Bonfanti C, Rossi G, Tedesco FS et al (2015) PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nat Commun 6:6364

    Article  CAS  PubMed  Google Scholar 

  11. Breuls N, Giacomazzi G, Sampaolesi M (2019) (Epi)genetic modifications in myogenic stem cells: from novel insights to therapeutic perspectives. Cells 8(5):429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pozzo E, Chai YC, Sampaolesi M. (2020) Comprehensive overview of non-coding RNAs in cardiac development. Adv Exp Med Biol 1229:197–211

    Google Scholar 

  13. Giarratana N, Conti F, La Rovere R et al (2020) MICAL2 is essential for myogenic lineage commitment. Cell Death Dis 11(8):654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sampaolesi M, Torrente Y, Innocenzi A et al (2003) Cell therapy of α-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492

    Article  CAS  PubMed  Google Scholar 

  15. Sampaolesi M, Blot S, D’Antona G et al (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579

    Article  CAS  PubMed  Google Scholar 

  16. Quattrocelli M, Swinnen M, Giacomazzi G et al (2015) Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle. J Clin Invest 125(12):4463–4482

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cossu G, Previtali SC, Napolitano S et al (2015) Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 7(12):1513–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  19. Ronzoni FL, Lemeille S, Kuzyakiv R et al (2020) Human fetal mesoangioblasts reveal tissue-dependent transcriptional signatures. Stem Cells Transl Med 9:575–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santoni de Sio FR, Gritti A, Cascio P et al (2008) Lentiviral vector gene transfer is limited by the proteasome at postentry steps in various types of stem cells. Stem Cells 26:2142–2152

    Article  CAS  PubMed  Google Scholar 

  21. Quattrocelli M, Giacomazzi G, Broeckx SY et al (2016) Equine-induced pluripotent stem cells retain lineage commitment toward myogenic and chondrogenic fates. Stem Cell Rep 6:55–63

    Article  CAS  Google Scholar 

  22. Tonlorenzi R, Dellavalle A, Schnapp E et al (2007) Isolation and characterization of mesoangioblasts from mouse, dog, and human tissues. Curr Protoc Stem Cell Biol Chapter 2:Unit 2B.1

    Google Scholar 

  23. Barbuti A, Galvez BG, Crespi A et al (2010) Mesoangioblasts from ventricular vessels can differentiate in vitro into cardiac myocytes with sinoatrial-like properties. J Mol Cell Cardiol 48:415–423

    Article  CAS  PubMed  Google Scholar 

  24. Camps J, Breuls N, Sifrim A et al (2020) Interstitial cell remodeling promotes aberrant adipogenesis in dystrophic muscles. Cell Rep 31:107597

    Article  CAS  PubMed  Google Scholar 

  25. Picelli S, Faridani OR, Björklund AK et al (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9:171–181

    Article  CAS  PubMed  Google Scholar 

  26. Breuls N, Giarratana N, Yedigaryan L et al (2021) Valproic acid stimulates myogenesis in pluripotent stem cell-derived mesodermal progenitors in a NOTCH-dependent manner. Cell Death Dis. 12(7): 677. https://doi.org/10.1038/s41419-021-03936-w. PMID: 34226515; PMCID: PMC8257578.

  27. Butler A, Hoffman P, Smibert P et al (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ronzoni FL, Giarratana N, Crippa S et al (2021) Guide Cells Support Muscle Regeneration and Affect Neuro-Muscular Junction Organization. Int J Mol Sci. 22(4):1939. https://doi.org/10.3390/ijms22041939. PMID: 33669272; PMCID: PMC7920023

  29. Marini V, Marino F, Aliberti F et al (2022) Long-term culture of patient-derived cardiac organoids recapitulated Duchenne muscular dystrophy cardiomyopathy and disease progression. Front Cell Dev Biol. 10:878311. https://doi.org/10.3389/fcell.2022.878311. PMID: 36035984; PMCID: PMC9403515

Download references

Acknowledgments

Work in the authors’ laboratory is supported by The Research Foundation Flanders (FWO) (#G066821N), INTERREG – Euregio Meuse-Rhine (GYM, Generate your muscle 2020-EMR116), and Italian Ministry of Health, Ricerca Finalizzata (RF-2019-12369703). MS is recipient of Hercules Foundation grant (AKUL/19/34) for the financing provided to purchase the high throughput calcium imaging system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurilio Sampaolesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Giarratana, N., Conti, F., Rinvenuti, L., Ronzoni, F., Sampaolesi, M. (2023). State of the Art Procedures for the Isolation and Characterization of Mesoangioblasts. In: Asakura, A. (eds) Skeletal Muscle Stem Cells. Methods in Molecular Biology, vol 2640. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3036-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3036-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3035-8

  • Online ISBN: 978-1-0716-3036-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation