Assay for Transposase-Accessible Chromatin Using Sequencing of Freshly Isolated Muscle Stem Cells

  • Protocol
  • First Online:
Skeletal Muscle Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2640))

Abstract

Actively transcribed genes harbor cis-regulatory modules with comparatively low nucleosome occupancy and few high-order structures (=“open chromatin”), whereas non-transcribed genes are characterized by high nucleosome density and extensive interactions between nucleosomes (=“closed chromatin”), preventing transcription factor binding. Knowledge about chromatin accessibility is crucial to understand gene regulatory networks determining cellular decisions. Several techniques are available to map chromatin accessibility, among which the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) is one of the most popular. ATAC-seq is based on a straightforward and robust protocol but requires adjustments for different cell types. Here, we describe an optimized protocol for ATAC-seq of freshly isolated murine muscle stem cells. We provide details for the isolation of MuSC, tagmentation, library amplification, double-sided SPRI bead cleanup, and library quality assessment and give recommendations for sequencing parameters and downstream analysis. The protocol should facilitate generation of high-quality data sets of chromatin accessibility in MuSCs, even for newcomers to the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mayran A, Drouin J (2018) Pioneer transcription factors shape the epigenetic landscape. J Biol Chem 293(36):13795–13804. https://doi.org/10.1074/jbc.R117.001232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klemm SL, Shipony Z, Greenleaf WJ (2019) Chromatin accessibility and the regulatory epigenome. Nat Rev Genet 20(4):207–220. https://doi.org/10.1038/s41576-018-0089-8

    Article  CAS  PubMed  Google Scholar 

  3. Buenrostro JD, Wu B, Chang HY et al (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21 29 21-21 29 29. https://doi.org/10.1002/0471142727.mb2129s109

    Article  Google Scholar 

  4. Jia G, Preussner J, Chen X et al (2018) Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat Commun 9(1):4877. https://doi.org/10.1038/s41467-018-07307-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ludwig LS, Lareau CA, Bao EL et al (2019) Transcriptional states and chromatin accessibility underlying human erythropoiesis. Cell Rep 27(11):3228–3240 e3227. https://doi.org/10.1016/j.celrep.2019.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang N, Niu J, Feng Y et al (2015) Oligodendroglial development: new roles for chromatin accessibility. Neuroscientist 21(6):579–588. https://doi.org/10.1177/1073858414565467

    Article  CAS  PubMed  Google Scholar 

  7. Trevino AE, Sinnott-Armstrong N, Andersen J et al (2020) Chromatin accessibility dynamics in a model of human forebrain development. Science 367(6476):eaay1645. https://doi.org/10.1126/science.aay1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Corces MR, Granja JM, Shams S et al (2018) The chromatin accessibility landscape of primary human cancers. Science 362(6413):eaav1898. https://doi.org/10.1126/science.aav1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deutschmeyer V, Breuer J, Walesch SK et al (2019) Epigenetic therapy of novel tumour suppressor ZAR1 and its cancer biomarker function. Clin Epigenetics 11(1):182. https://doi.org/10.1186/s13148-019-0774-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou ZH, Wang QL, Mao LH et al (2019) Chromatin accessibility changes are associated with enhanced growth and liver metastasis capacity of acid-adapted colorectal cancer cells. Cell Cycle 18(4):511–522. https://doi.org/10.1080/15384101.2019.1578145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jia Y, Vong JS, Asafova A et al (2019) Lamin B1 loss promotes lung cancer development and metastasis by epigenetic derepression of RET. J Exp Med 216(6):1377–1395. https://doi.org/10.1084/jem.20181394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bryois J, Garrett ME, Song L et al (2018) Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat Commun 9(1):3121. https://doi.org/10.1038/s41467-018-05379-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Y, Chang JC, Hon CC et al (2018) Chromatin accessibility landscape of articular knee cartilage reveals aberrant enhancer regulation in osteoarthritis. Sci Rep 8(1):15499. https://doi.org/10.1038/s41598-018-33779-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gunther S, Kim J, Kostin S et al (2013) Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13(5):590–601. https://doi.org/10.1016/j.stem.2013.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Evano B, Tajbakhsh S (2018) Skeletal muscle stem cells in comfort and stress. NPJ Regen Med 3:24. https://doi.org/10.1038/s41536-018-0062-3

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kuang S, Kuroda K, Le Grand F et al (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129(5):999–1010. https://doi.org/10.1016/j.cell.2007.03.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sreenivasan K, Ianni A, Kunne C et al (2020) Attenuated epigenetic suppression of muscle stem cell necroptosis is required for efficient regeneration of dystrophic muscles. Cell Rep 31(7):107652. https://doi.org/10.1016/j.celrep.2020.107652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boonsanay V, Zhang T, Georgieva A et al (2016) Regulation of skeletal muscle stem cell quiescence by Suv4-20h1-dependent facultative heterochromatin formation. Cell Stem Cell 18(2):229–242. https://doi.org/10.1016/j.stem.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  19. Lilja KC, Zhang N, Magli A et al (2017) Pax7 remodels the chromatin landscape in skeletal muscle stem cells. PLoS One 12(4):e0176190. https://doi.org/10.1371/journal.pone.0176190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou J, So KK, Li Y et al (2019) Elevated H3K27ac in aged skeletal muscle leads to increase in extracellular matrix and fibrogenic conversion of muscle satellite cells. Aging Cell 18(5):e12996. https://doi.org/10.1111/acel.12996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garcia-Prat L, Munoz-Canoves P (2017) Aging, metabolism and stem cells: spotlight on muscle stem cells. Mol Cell Endocrinol 445:109–117. https://doi.org/10.1016/j.mce.2016.08.021

    Article  CAS  PubMed  Google Scholar 

  22. Buenrostro JD, Giresi PG, Zaba LC et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218. https://doi.org/10.1038/nmeth.2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen X, Miragaia RJ, Natarajan KN et al (2018) A rapid and robust method for single cell chromatin accessibility profiling. Nat Commun 9(1):5345. https://doi.org/10.1038/s41467-018-07771-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scott RW, Arostegui M, Schweitzer R et al (2019) Hic1 defines quiescent mesenchymal progenitor subpopulations with distinct functions and fates in skeletal muscle regeneration. Cell Stem Cell 25(6):797–813 e799. https://doi.org/10.1016/j.stem.2019.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Preussner J, Zhong J, Sreenivasan K et al (2018) Oncogenic amplification of zygotic dux factors in regenerating p53-deficient muscle stem cells defines a molecular cancer subtype. Cell Stem Cell 23(6):794–805 e794. https://doi.org/10.1016/j.stem.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  26. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  28. Bentsen M, Goymann P, Schultheis H et al (2020) ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation. Nat Commun 11(1):4267. https://doi.org/10.1038/s41467-020-18035-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu L, Cheung TH, Charville GW et al (2015) Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nat Protoc 10(10):1612–1624. https://doi.org/10.1038/nprot.2015.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Elustondo P, Martin LA, Karten B (2017) Mitochondrial cholesterol import. Biochim Biophys Acta Mol Cell Biol Lipids 1862(1):90–101. https://doi.org/10.1016/j.bbalip.2016.08.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Excellence Initiative “Cardiopulmonary Institute” (CPI), the DFG collaborative research center SFB1213, the DFG Transregional Collaborative Research Centre 81, the DFG Clinical Research Unit FKO 309, and the European Research Area Network on Cardiovascular Diseases project CLARIFY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yekelchyk, M., Guenther, S., Braun, T. (2023). Assay for Transposase-Accessible Chromatin Using Sequencing of Freshly Isolated Muscle Stem Cells. In: Asakura, A. (eds) Skeletal Muscle Stem Cells. Methods in Molecular Biology, vol 2640. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3036-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3036-5_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3035-8

  • Online ISBN: 978-1-0716-3036-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation