Murine Models of Tenotomy-Induced Mechanical Overloading and Tail-Suspension-Induced Mechanical Unloading

  • Protocol
  • First Online:
Skeletal Muscle Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2640))

  • 1054 Accesses

Abstract

Skeletal muscle is a highly plastic tissue that can alter its mass and strength in response to mechanical stimulation, such as overloading and unloading, which lead to muscle hypertrophy and atrophy, respectively. Mechanical loading in the muscle influences muscle stem cell dynamics, including activation, proliferation, and differentiation. Although experimental models of mechanical overloading and unloading have been widely used for the investigation of the molecular mechanisms regulating muscle plasticity and stem cell function, few studies have described the methods in detail. Here, we describe the appropriate procedures for tenotomy-induced mechanical overloading and tail-suspension-induced mechanical unloading, which are the most common and simple methods to induce muscle hypertrophy and atrophy in mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Janssen I, Heymsfield SB, Wang ZM et al (2000) Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol 89(1):81–88

    Article  CAS  PubMed  Google Scholar 

  2. Baskin KK, Winders BR, Olson EN (2015) Muscle as a “mediator” of systemic metabolism. Cell Metab 21:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miyazaki M, Esser KA (2009) Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J Appl Physiol 106(4):1367–1373

    Article  CAS  PubMed  Google Scholar 

  4. Young A, Stokes M, Round JM et al (1983) The effect of high-resistance training on the strength and cross-sectional area of the human quadriceps. Eur J Clin Investig 13(5):411–417

    Article  CAS  Google Scholar 

  5. Kandarian SC, Young JC, Gomez EE (1992) Adaptation in synergistic muscles to soleus and plantaris muscle removal in the rat hindlimb. Life Sci 51(21):1691–1698

    Article  CAS  PubMed  Google Scholar 

  6. LeBlanc A, Gogia P, Schneider V et al (1988) Calf muscle area and strength changes after five weeks of horizontal bed rest. Am J Sports Med 16(6):624–629

    Article  CAS  PubMed  Google Scholar 

  7. Cadena SM, Zhang Y, Fang J et al (2019) Skeletal muscle in MuRF1 null mice is not spared in low-gravity conditions, indicating atrophy proceeds by unique mechanisms in space. Sci Rep 9(1):9397

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zammit PS, Golding JP, Nagata Y et al (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166(3):347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fujimaki S, Hidaka R, Asashima M et al (2014) Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running. J Biol Chem 289(11):7399–7412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fujimaki S, Wakabayashi T, Asashima M et al (2016) Treadmill running induces satellite cell activation in diabetic mice. Biochem Biophys Rep 8:6–13

    PubMed  PubMed Central  Google Scholar 

  11. Fujimaki S, Machida M, Wakabayashi T et al (2016) Functional overload enhances satellite cell properties in skeletal muscle. Stem Cells Int 2016:7619418

    Article  PubMed  Google Scholar 

  12. Fukuda S, Kaneshige A, Kaji T et al (2019) Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. elife 8:e48284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guerci A, Lahoute C, Hébrard S et al (2012) Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 15(1):25–37

    Article  CAS  PubMed  Google Scholar 

  14. Guo BS, Cheung KK, Yeung SS et al (2012) Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS One 7(1):e30348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arentson-Lantz EJ, English KL, Paddon-Jones D et al (2016) Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. J Appl Physiol 120(8):965–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guitart M, Lloreta J, Mañas-Garcia L et al (2018) Muscle regeneration potential and satellite cell activation profile during recovery following hindlimb immobilization in mice. J Cell Physiol 233(5):4360–4372

    Article  CAS  PubMed  Google Scholar 

  17. Brooks MJ, Hajira A, Mohamed JS et al (2018) Voluntary wheel running increases satellite cell abundance and improves recovery from disuse in gastrocnemius muscles from mice. J Appl Physiol 124(6):1616–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phelan JN, Gonyea WJ (1997) Effect of radiation on satellite cell activity and protein expression in overloaded mammalian skeletal muscle. Anat Rec 247(2):179–188

    Article  CAS  PubMed  Google Scholar 

  19. Fukada SI, Akimoto T, Sotiropoulos A (2020) Role of damage and management in muscle hypertrophy: different behaviors of muscle stem cells in regeneration and hypertrophy. Biochim Biophys Acta, Mol Cell Res 1867(9):118742

    Article  CAS  Google Scholar 

  20. Hubbard RW, Ianuzzo CD, Mathew WT et al (1975) Compensatory adaptations of skeletal muscle composition to a long-term functional overload. Growth 39(1):85–93

    CAS  PubMed  Google Scholar 

  21. Fry CS, Lee JD, Jackson JR et al (2014) Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J 28(4):1654–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hanson ED, Betik AC, Timpani CA et al (2020) Testosterone suppression does not exacerbate disuse atrophy and impairs muscle recovery that is not rescued by high protein. J Appl Physiol 129(1):5–16

    Article  CAS  PubMed  Google Scholar 

  23. Brocca L, Toniolo L, Reggiani C et al (2017) FoxO-dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension. J Physiol 595(4):1143–1158

    Article  CAS  PubMed  Google Scholar 

  24. Booth FW (1978) Regrowth of atrophied skeletal muscle in adult rats after ending immobilization. J Appl Physiol Respir Environ Exerc Physiol 44(2):225–230

    CAS  PubMed  Google Scholar 

  25. Fujimaki S, Matsumoto T, Muramatsu M et al (2022) The endothelial Dll4–muscular Notch2 axis regulates skeletal muscle mass. Nat Metab 4(2):180–189

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Agency for Medical Research and Development (AMED, JP18ek0109383 and JP19bm0704036), the FOREST program of the Japan Science and Technology Agency (JST,  JPMJFR205C) the Grant-in-Aid for Scientific Research KAKENHI (18H03193, 20K21763, 20K19641, 22K18414 and 22H00505) from the Japan Society for the Promotion of Science (JSPS), the Uehara Memorial Foundation, and the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Ono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fujimaki, S., Ono, Y. (2023). Murine Models of Tenotomy-Induced Mechanical Overloading and Tail-Suspension-Induced Mechanical Unloading. In: Asakura, A. (eds) Skeletal Muscle Stem Cells. Methods in Molecular Biology, vol 2640. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3036-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3036-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3035-8

  • Online ISBN: 978-1-0716-3036-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation