Quantitative Imaging Analysis of NF-κB for Mathematical Modeling Applications

  • Protocol
  • First Online:
Computational Modeling of Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2634))

Abstract

Mathematical models can integrate different types of experimental datasets, reconstitute biological systems in silico, and identify previously unknown molecular mechanisms. Over the past decade, mathematical models have been developed based on quantitative observations, such as live-cell imaging and biochemical assays. However, it is difficult to directly integrate next-generation sequencing (NGS) data. Although highly dimensional, NGS data mostly only provides a “snapshot” of cellular states. Nevertheless, the development of various methods for NGS analysis has led to much more accurate predictions of transcription factor activity and has revealed various concepts regarding transcriptional regulation. Therefore, fluorescence live-cell imaging of transcription factors can help alleviate the limitations in NGS data by supplementing temporal information, linking NGS to mathematical modeling. This chapter introduces an analytical method for quantifying dynamics of nuclear factor kappaB (NF-κB) which forms aggregates in the nucleus. The method may also be applicable to other transcription factors regulated in a similar fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sasaki Y, Iwai K (2015) Roles of the NF-κB pathway in B-lymphocyte biology. In: Kurosaki T, Wienands J (eds) B cell receptor signaling. Current topics in microbiology and immunology. Springer Verlag, pp 177–209

    Google Scholar 

  2. Cheong R, Hoffmann A, Levchenko A (2008) Understanding NF-κB signaling via mathematical modeling. Mol Syst Biol 4:192. https://doi.org/10.1038/msb.2008.30

    Article  PubMed  PubMed Central  Google Scholar 

  3. Inoue K, Shinohara H, Behar M et al (2016) Oscillation dynamics underlie functional switching of NF-κB for B-cell activation. NPJ Syst Biol Appl 2:16024. https://doi.org/10.1038/npjsba.2016.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nelson DE, Ihekwaba AEC, Elliott M et al (2004) Oscillations in NF-κB signaling control the dynamics of gene expression. Science (80- ) 306:704–708. https://doi.org/10.1126/science.1099962

    Article  CAS  Google Scholar 

  5. Ashall L, Horton CA, Nelson DE et al (2009) Pulsatile stimulation determines timing and specificity of NF-κB-dependent transcription. Science (80- ) 324:242–246. https://doi.org/10.1126/science.1164860

    Article  CAS  Google Scholar 

  6. Zambrano S, De Toma I, Piffer A et al (2016) NF-κB oscillations translate into functionally related patterns of gene expression. Elife 5:e09100. https://doi.org/10.7554/eLife.09100

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shinohara H, Behar M, Inoue K et al (2014) Positive feedback within a kinase signaling complex functions as a switch mechanism for NF-κB activation. Science (80- ) 344:760–764. https://doi.org/10.1126/science.1250020

    Article  CAS  Google Scholar 

  8. Hao N, O’Shea EK (2012) Signal-dependent dynamics of transcription factor translocation controls gene expression. Nat Struct Mol Biol 19:31–39. https://doi.org/10.1038/nsmb.2192

    Article  CAS  Google Scholar 

  9. Tay S, Hughey JJ, Lee TK et al (2010) Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing. Nature 466:267–271. https://doi.org/10.1038/nature09145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee REC, Walker SR, Savery K et al (2014) Fold change of nuclear NF-κB determines TNF-induced transcription in single cells. Mol Cell 53:867–879. https://doi.org/10.1016/j.molcel.2014.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kellogg RA, Tian C, Lipniacki T et al (2015) Digital signaling decouples activation probability and population heterogeneity. Elife 4:e08931. https://doi.org/10.7554/eLife.08931

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brown JD, Lin CY, Duan Q et al (2014) NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell 56:219–231. https://doi.org/10.1016/j.molcel.2014.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Michida H, Imoto H, Shinohara H et al (2020) The number of transcription factors at an enhancer determines switch-like gene expression. Cell Rep 31:107724. https://doi.org/10.1016/j.celrep.2020.107724

    Article  CAS  PubMed  Google Scholar 

  14. Wibisana JN, Inaba T, Shinohara H et al (2022) Enhanced transcriptional heterogeneity mediated by NF-κB super-enhancers. PLoS Genet 18;6:e1010235. https://doi.org/10.1371/journal.pgen.1010235

  15. Lovén J, Hoke HA, Lin CY et al (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153:320–334. https://doi.org/10.1016/j.cell.2013.03.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Whyte WA, Orlando DA, Hnisz D et al (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–319. https://doi.org/10.1016/j.cell.2013.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hnisz D, Shrinivas K, Young RA et al (2017) A phase separation model for transcriptional control. Cell 169:13–23. https://doi.org/10.1016/j.cell.2017.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sabari BR, Dall’Agnese A, Boija A et al (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science (80- ) 361:eaar3958. https://doi.org/10.1126/science.aar3958

    Article  CAS  Google Scholar 

  19. Liu Z, Tjian R (2018) Visualizing transcription factor dynamics in living cells. J Cell Biol 217:1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ochiai H, Sugawara T, Yamamoto T (2015) Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res 43:e127. https://doi.org/10.1093/nar/gkv624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boija A, Klein IA, Sabari BR et al (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175:1842–1855.e16. https://doi.org/10.1016/j.cell.2018.10.042

    Article  CAS  PubMed  Google Scholar 

  22. Tatavosian R, Kent S, Brown K et al (2019) Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J Biol Chem 294:1451–1463. https://doi.org/10.1074/jbc.RA118.006620

    Article  CAS  PubMed  Google Scholar 

  23. Vasquez KM, Marburger K, Intody Z, Wilson JH (2001) Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 98:8403–8410. https://doi.org/10.1073/pnas.111009698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buenrostro JD, Giresi PG, Zaba LC et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218. https://doi.org/10.1038/nmeth.2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sachs K (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science (80- ) 308:523–529. https://doi.org/10.1126/science.1105809

    Article  CAS  Google Scholar 

  26. Krishnaswamy S, Spitzer MH, Mingueneau M et al (2014) Conditional density-based analysis of T cell signaling in single-cell data. Science (80- ) 346:1250689. https://doi.org/10.1126/science.1250689

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Hiroki Michida and Dr. Hiroaki Imoto for discussions on bioinformatics analysis and mathematical modeling, respectively. J.N.W. was supported by the Honjo International Scholarship Foundation. M.O. was supported by JSPS KAKENHI Grant No. 15KT0084, 17H06299, 17H06302, and 18H04031, JST-Mirai program No. JPMJMI19G7, JST-CREST grant JPMJCR21N3, the Takeda Science Foundation, and the Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariko Okada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wibisana, J.N., Inaba, T., Sako, Y., Okada, M. (2023). Quantitative Imaging Analysis of NF-κB for Mathematical Modeling Applications. In: Nguyen, L.K. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 2634. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3008-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3008-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3007-5

  • Online ISBN: 978-1-0716-3008-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation