MicroRNA–Target Identification: A Combinatorial In Silico Approach

  • Protocol
  • First Online:
MicroRNA Detection and Target Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2630))

Abstract

Contemporary computational target prediction tools with their distinctive properties and stringency have been playing a vital role in pursuing putative targets for a solitary miRNA or a subcategory of miRNAs. These tools utilize a defined set of probabilistic algorithms, machine learning techniques, and information of experimentally validated miRNA targets to provide the best selection. However, there are numerous false-positive predictions, and a method to choose an archetypal approach and put the data provided by the prediction tools into context is still lacking. Moreover, sensitivity, specificity, and overall efficiency of a single tool have not yet been achieved. Therefore, a systematic combination of selective online tools combining elementary and advanced factors of miRNA target identification might reinforce the current target prediction regime. The focus of this study was to build a comprehensive workflow by combining six available online tools to facilitate the current understanding of miRNA–target prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  Google Scholar 

  2. Agarwal V, Program SB, Bartel DP, et al (2015) MicroRNAs: principles of target recognition and developmental roles

    Google Scholar 

  3. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. elife 4:1–38. https://doi.org/10.7554/eLife.05005

    Article  Google Scholar 

  4. Laganà A (2015) Computational prediction of microRNA targets. In: Advances in experimental medicine and biology, pp 231–252

    Google Scholar 

  5. Li J, Zhang Y (2019) Current experimental strategies for intracellular target identification of microRNA. ExRNA 1:1–8. https://doi.org/10.1186/s41544-018-0002-9

    Article  Google Scholar 

  6. Hamzeiy H, Allmer J, Yousef M (2014) miRNomics: MicroRNA biology and computational analysis 1107. https://doi.org/10.1007/978-1-62703-748-8

  7. Min H, Yoon S (2010) Got target?: computational methods for microRNA target prediction and their extension. Exp Mol Med 42:233–244. https://doi.org/10.3858/emm.2010.42.4.032

    Article  CAS  Google Scholar 

  8. Broughton JP, Lovci MT, Huang JL et al (2016) Pairing beyond the seed supports MicroRNA targeting specificity. Mol Cell 64:320–333. https://doi.org/10.1016/j.molcel.2016.09.004

    Article  CAS  Google Scholar 

  9. Elefant N, Altuvia Y, Margalit H (2011) A wide repertoire of miRNA binding sites: prediction and functional implications. Bioinformatics 27:3093–3101. https://doi.org/10.1093/bioinformatics/btr534

    Article  CAS  Google Scholar 

  10. Yue D, Liu H, Huang Y (2009) Survey of computational algorithms for MicroRNA target prediction. Curr Genomics 10:478–492. https://doi.org/10.2174/138920209789208219

    Article  CAS  Google Scholar 

  11. Zhang Y, Verbeek FJ (2010) Comparison and integration of target prediction algorithms for microRNA studies. J Integr Bioinform 7:1–13. https://doi.org/10.1515/jib-2010-127

    Article  Google Scholar 

  12. Mockly S, Seitz H (2019) Inconsistencies and limitations of current MicroRNA target identification methods. Methods Mol Biol 1970:291–314. https://doi.org/10.1007/978-1-4939-9207-2_16

    Article  CAS  Google Scholar 

  13. Fridrich A, Hazan Y, Moran Y (2019) Too many false targets for MicroRNAs: challenges and pitfalls in prediction of miRNA targets and their gene ontology in model and non-model organisms. BioEssays 41:e1800169. https://doi.org/10.1002/bies.201800169

    Article  Google Scholar 

  14. Pinzón N, Li B, Martinez L et al (2017) MicroRNA target prediction programs predict many false positives. Genome Res 27:234–245. https://doi.org/10.1101/gr.205146.116

    Article  CAS  Google Scholar 

  15. Peterson SM, Thompson JA, Ufkin ML et al (2014) Common features of microRNA target prediction tools. Front Genet 5:1–10. https://doi.org/10.3389/fgene.2014.00023

    Article  CAS  Google Scholar 

  16. Akbari Moqadam F, Pieters R, Den Boer ML (2013) The hunting of targets: challenge in miRNA research. Leukemia 27:16–23. https://doi.org/10.1038/leu.2012.179

    Article  CAS  Google Scholar 

  17. Betel D, Koppal A, Agius P et al (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11. https://doi.org/10.1186/gb-2010-11-8-r90

  18. Salim A, Vinod Chandra SS (2014) Computational prediction of microRNAs and their targets. J Proteomics Bioinform 7:193–202. https://doi.org/10.4172/jpb.1000320

    Article  CAS  Google Scholar 

  19. Faiza M, Tanveer K, Fatihi S et al (2017) Comprehensive overview and assessment of miRNA target prediction tools in human and drosophila melanogaster

    Google Scholar 

  20. Grosswendt S, Filipchyk A, Manzano M et al (2014) Unambiguous identification of miRNA: target site interactions by different types of ligation reactions. Mol Cell 54:1042–1054. https://doi.org/10.1016/j.molcel.2014.03.049

    Article  CAS  Google Scholar 

  21. Akhtar MM, Micolucci L, Islam MS et al (2016) Bioinformatic tools for microRNA dissection. Nucleic Acids Res 44:24–44. https://doi.org/10.1093/nar/gkv1221

    Article  CAS  Google Scholar 

  22. McGeary SE, Lin KS, Shi CY et al (2019) The biochemical basis of microRNA targeting efficacy. Science 366(80):414763. https://doi.org/10.1126/science.aav1741

    Article  CAS  Google Scholar 

  23. Rojo Arias J, Busskamp V (2019) Challenges in microRNAs’ targetome prediction and validation. Neural Regen Res 14:1672–1677. https://doi.org/10.4103/1673-5374.257514

    Article  CAS  Google Scholar 

  24. Tarang S, Weston MD (2014) Macros in microRNA target identification: a comparative analysis of in silico, in vitro, and in vivo approaches to microRNA target identification. RNA Biol 11:324–333. https://doi.org/10.4161/rna.28649

    Article  Google Scholar 

  25. Roberts JT, Borchert GM (2017) Computational prediction of microRNA target genes, target prediction databases, and web resources. In: Methods in molecular biology, pp 109–122

    Google Scholar 

  26. Quillet A, Saad C, Ferry G et al (2020) Improving bioinformatics prediction of microRNA targets by ranks aggregation. Front Genet 10:224915. https://doi.org/10.3389/fgene.2019.01330

    Article  CAS  Google Scholar 

  27. Cloonan N (2015) Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. BioEssays 37:379–388. https://doi.org/10.1002/bies.201400191

    Article  CAS  Google Scholar 

  28. Friedman RC, Farh KKH, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. https://doi.org/10.1101/gr.082701.108

    Article  CAS  Google Scholar 

  29. Tokar T, Pastrello C, Rossos AEM et al (2018) MirDIP 4.1 – integrative database of human microRNA target predictions. Nucleic Acids Res 46:D360–D370. https://doi.org/10.1093/nar/gkx1144

    Article  CAS  Google Scholar 

  30. Shirdel EA, **e W, Mak TW, Jurisica I (2011) Navigating the micronome – using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One 6. https://doi.org/10.1371/journal.pone.0017429

  31. Riffo-Campos ÁL, Riquelme I, Brebi-Mieville P (2016) Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci 17. https://doi.org/10.3390/ijms17121987

  32. Ovando-Vázquez C, Lepe-Soltero D, Abreu-Goodger C (2016) Improving microRNA target prediction with gene expression profiles. BMC Genomics 17:1–13. https://doi.org/10.1186/s12864-016-2695-1

    Article  CAS  Google Scholar 

  33. Da Costa Martins PA, De Windt LJ (2012) Targeting MicroRNA targets. Circ Res 111:506–508. https://doi.org/10.1161/CIRCRESAHA.112.276717

    Article  CAS  Google Scholar 

  34. Hsu JB, Chiu CM, Da HS et al (2011) MiRTar: an integrated system for identifying miRNA-target interactions in human. BMC Bioinform 12:300. https://doi.org/10.1186/1471-2105-12-300

    Article  CAS  Google Scholar 

  35. Laganà A, Forte S, Giudice A et al (2009) MiRò: a miRNA knowledge base. Database 2009:1–7. https://doi.org/10.1093/database/bap008

    Article  CAS  Google Scholar 

  36. Witkos TM, Koscianska E, Krzyzosiak WJ (2011) Practical aspects of microRNA target prediction. Curr Mol Med 11:93–109. https://doi.org/10.2174/156652411794859250

    Article  CAS  Google Scholar 

  37. Kuhn DE, Martin MM, Feldman DS et al (2008) Experimental validation of miRNA targets. Methods 44:47–54. https://doi.org/10.1016/j.ymeth.2007.09.005

    Article  CAS  Google Scholar 

  38. Chou CH, Shrestha S, Yang CD et al (2018) MiRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46:D296–D302. https://doi.org/10.1093/nar/gkx1067

    Article  CAS  Google Scholar 

  39. Da HS, Lin FM, Wu WY et al (2011) MiRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:163–169. https://doi.org/10.1093/nar/gkq1107

    Article  CAS  Google Scholar 

  40. Wang M, Zhao Y, Zhang B (2015) Efficient test and visualization of multi-set intersections. Sci Rep 5:1–12. https://doi.org/10.1038/srep16923

    Article  CAS  Google Scholar 

  41. Kanoria S, Rennie W, Liu C et al (2016) STarMir tools for prediction of microRNA binding sites. In: Turner DH, Mathews DH (eds) Methods in molecular biology. Springer, New York, pp 73–82

    Google Scholar 

  42. Rennie W, Liu C, Carmack CS et al (2014) STarMir: a web server for prediction of microRNA binding sites. Nucleic Acids Res 42:114–118. https://doi.org/10.1093/nar/gku376

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a QUT postgraduate scholarship to KMTA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyn R. Griffiths .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arif, K.M.T., Okolicsanyi, R.K., Haupt, L.M., Griffiths, L.R. (2023). MicroRNA–Target Identification: A Combinatorial In Silico Approach. In: Dalmay, T. (eds) MicroRNA Detection and Target Identification. Methods in Molecular Biology, vol 2630. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2982-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2982-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2981-9

  • Online ISBN: 978-1-0716-2982-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation