Collection of Plasma Samples in Areas with Limited Healthcare Access

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2628))

Abstract

Regular monitoring of various biomarkers and molecular panels in plasma can significantly help to prevent disease onset and improve its management and final outcomes. Many groups can benefit from monitoring programs focusing on the prevention of cardiovascular diseases, evaluation of environmental exposure impacts, or the prevention/management of cancer. Improvement in therapeutic options in part due to targeted therapeutic agents and monoclonal antibody therapies has led to a significant sized population that can be described as “cancer survivors.” These patients, although in remission from their original disease, are at significant risk for the recurring disease and must be monitored for adverse events. Monitoring is, however, not an easy task; requiring a high level of complexity in lab facilities and blood/plasma sampling, collection, and storage must occur under tightly controlled conditions. These demanding circumstances are especially difficult to attain in rural areas and in historically marginalized populations. The Telimmune Plasma Separation Card (TPS card or TPSC) has been developed to enable diagnostic plasma sampling, collection, and stabilization in locations that may be remote to laboratory or clinic. The TPSC requires a drop of blood applied to a top of a separation system consisting of a separation membrane and collection disk. In 3 min, the TPSC device separates plasma from erythrocytes and deposits a defined volume of plasma into a collection disc which is air-dried for 15 min to deliver a stabilized, volumetric plasma sample, which may be stored or shipped at ambient temperatures with minimal biological risk. Extraction of proteins and metabolites is then achieved in well-equipped laboratories using protocols discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 189.89
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 263.74
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crowley TA, Pizziconi V (2005) Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip 5(9):922–929. https://doi.org/10.1039/b502930a

    Article  CAS  Google Scholar 

  2. Hosokawa M, Hayata T, Fukuda Y, Arakaki A, Yoshino T, Tanaka T, Matsunaga T (2010) Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Anal Chem 82(15):6629–6635. https://doi.org/10.1021/ac101222x

    Article  CAS  Google Scholar 

  3. Moorthy J, Beebe DJ (2003) In situ fabricated porous filters for microsystems. Lab Chip 3(2):62–66. https://doi.org/10.1039/b300450c

    Article  CAS  Google Scholar 

  4. Shim JS, Browne AW, Ahn CH (2010) An on-chip whole blood/plasma separator with bead-packed microchannel on COC polymer. Biomed Microdevices 12(5):949–957. https://doi.org/10.1007/s10544-010-9449-7

    Article  Google Scholar 

  5. Weiner C, Sara M, Dasgupta G, Sleytr UB (1994) Affinity cross-flow filtration: purification of IgG with a novel protein a affinity matrix prepared from two-dimensional protein crystals. Biotechnol Bioeng 44(1):55–65. https://doi.org/10.1002/bit.260440109

    Article  CAS  Google Scholar 

  6. Haeberle S, Brenner T, Zengerle R, Ducree J (2006) Centrifugal extraction of plasma from whole blood on a rotating disk. Lab Chip 6(6):776–781. https://doi.org/10.1039/b604145k

    Article  CAS  Google Scholar 

  7. Wong AP, Gupta M, Shevkoplyas SS, Whitesides GM (2008) Egg beater as centrifuge: isolating human blood plasma from whole blood in resource-poor settings. Lab Chip 8(12):2032–2037. https://doi.org/10.1039/b809830c

    Article  CAS  Google Scholar 

  8. Blattert C, Jurischka R, Tahhan I, Schoth A, Kerth P, Menz W (2004) Separation of blood in microchannel bends. Conf Proc IEEE Eng Med Biol Soc 4:2627–2630. https://doi.org/10.1109/IEMBS.2004.1403754

    Article  Google Scholar 

  9. Schoth A, Jurischka R, Blattert C, Tahhan I, Reinecke H (2006) The evolution of lab-on-A-chip: the Micro-Tele-BioChip. Med Device Technol 17(4):10–13

    CAS  Google Scholar 

  10. Rodriguez-Villarreal AI, Arundell M, Carmona M, Samitier J (2010) High flow rate microfluidic device for blood plasma separation using a range of temperatures. Lab Chip 10(2):211–219. https://doi.org/10.1039/b904531g

    Article  CAS  Google Scholar 

  11. Yang S, Undar A, Zahn JD (2006) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6(7):871–880. https://doi.org/10.1039/b516401j

    Article  CAS  Google Scholar 

  12. VanDelinder V, Groisman A (2006) Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal Chem 78(11):3765–3771. https://doi.org/10.1021/ac060042r

    Article  CAS  Google Scholar 

  13. deWilde A, Sadilkova K, Sadilek M, Vasta V, Hahn SH (2008) Tryptic peptide analysis of ceruloplasmin in dried blood spots using liquid chromatography-tandem mass spectrometry: application to newborn screening. Clin Chem 54(12):1961–1968. https://doi.org/10.1373/clinchem.2008.111989. clinchem.2008.111989 [pii]

    Article  CAS  Google Scholar 

  14. Edwards RL, Griffiths P, Bunch J, Cooper HJ (2012) Top-down proteomics and direct surface sampling of neonatal dried blood spots: diagnosis of unknown hemoglobin variants. J Am Soc Mass Spectrom 23(11):1921–1930. https://doi.org/10.1007/s13361-012-0477-9

    Article  CAS  Google Scholar 

  15. Goldstein JL, Young SP, Changela M, Dickerson GH, Zhang H, Dai J, Peterson D, Millington DS, Kishnani PS, Bali DS (2009) Screening for Pompe disease using a rapid dried blood spot method: experience of a clinical diagnostic laboratory. Muscle Nerve 40(1):32–36. https://doi.org/10.1002/mus.21376

    Article  CAS  Google Scholar 

  16. Kong ST, Lin HS, Ching J, Ho PC (2011) Evaluation of dried blood spots as sample matrix for gas chromatography/mass spectrometry based metabolomic profiling. Anal Chem 83(11):4314–4318. https://doi.org/10.1021/ac200662s

    Article  CAS  Google Scholar 

  17. Meikle PJ, Ranieri E, Simonsen H, Rozaklis T, Ramsay SL, Whitfield PD, Fuller M, Christensen E, Skovby F, Hopwood JJ (2004) Newborn screening for lysosomal storage disorders: clinical evaluation of a two-tier strategy. Pediatrics 114(4):909–916. https://doi.org/10.1542/peds.2004-0583. 114/4/909 [pii]

    Article  Google Scholar 

  18. Spooner N, Lad R, Barfield M (2009) Dried blood spots as a sample collection technique for the determination of pharmacokinetics in clinical studies: considerations for the validation of a quantitative bioanalytical method. Anal Chem 81(4):1557–1563. https://doi.org/10.1021/ac8022839. 10.1021/ac8022839 [pii]

    Article  CAS  Google Scholar 

  19. Edozien JC, Switzer BR (1977) Effects of dietary protein, fat and energy on blood hemoglobin and hematocrit in the rat. J Nutr 107(6):1016–1021

    Article  CAS  Google Scholar 

  20. Isikay CT, Uzuner N, Gucuyener D, Ozdemir G (2005) The effects of hematocrit and age on transcranial Doppler measurements in patients with recent ischemic stroke. Neurol India 53(1):51–54; discussion 54.

    Article  Google Scholar 

  21. Painter P, Moore G, Carlson L, Paul S, Myll J, Phillips W, Haskell W (2002) Effects of exercise training plus normalization of hematocrit on exercise capacity and health-related quality of life. Am J Kidney Dis 39(2):257–265. https://doi.org/10.1053/ajkd.2002.30544. S0272-6386(02)09189-8 [pii]

    Article  Google Scholar 

  22. Kim JH, Woenker T, Adamec J, Regnier FE (2013) Simple, miniaturized blood plasma extraction method. Anal Chem 85(23):11501–11508. https://doi.org/10.1021/ac402735y

    Article  CAS  Google Scholar 

  23. Koehler K, Marks-Nelson E, Braga CP, Beckford S, Adamec J (2020) Validity of plasma collection cards for ferritin assessment-a proof-of-concept study. Eur J Haematol 104(6):554–561. https://doi.org/10.1111/ejh.13397

    Article  CAS  Google Scholar 

  24. Schleif WS, Harlan RS, Hamblin F, Amankwah EK, Goldenberg NA, Hernandez RG, Johnson SB, Reed S, Graham DR (2022) Defining the healthy infant metabolome: liquid chromatography tandem-mass spectrometry analysis of dried blood spot extracts from the prospective research on early determinants of illness and children’s health trajectories birth cohort study. J Pediatr 241:251–256 e254. https://doi.org/10.1016/j.jpeds.2021.09.061

    Article  CAS  Google Scholar 

  25. Yuan X, Lu Y, **ao C, Zhu J, Zhang W, Yu C, Li S (2018) Application of a micro plasma collection card for the detection of homocysteine by liquid chromatography with tandem mass spectrometry. J Sep Sci 41(22):4167–4176. https://doi.org/10.1002/jssc.201800579

    Article  CAS  Google Scholar 

  26. Kearney DJ, Boes L, Peacock JS (1999) Use of a dried plasma collection card for simplified diagnosis of Helicobacter pylori infection. Aliment Pharmacol Ther 13(11):1531–1534

    Article  CAS  Google Scholar 

  27. Nurgalieva ZZ, Almuchambetova R, Machmudova A, Kapsultanova D, Osato MS, Peacock J, Zoltek RP, Marchildon PA, Graham DY, Zhangabylov A (2000) Use of a dry-plasma collection device to overcome problems with storage and transportation of blood samples for epidemiology studies in develo** countries. Clin Diagn Lab Immunol 7(6):882–884

    Article  CAS  Google Scholar 

  28. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81(24):10038–10048. https://doi.org/10.1021/ac9019522

    Article  CAS  Google Scholar 

  29. Hughes CS, Moggridge S, Muller T, Sorensen PH, Morin GB, Krijgsveld J (2019) Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc 14(1):68–85. https://doi.org/10.1038/s41596-018-0082-x

    Article  CAS  Google Scholar 

  30. Ferraz TP, Fiuza MC, Dos Santos ML, Pontes De Carvalho L, Soares NM (2004) Comparison of six methods for the extraction of lipids from serum in terms of effectiveness and protein preservation. J Biochem Biophys Methods 58(3):187–193. https://doi.org/10.1016/j.jbbm.2003.10.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institute of Health (P20 RR017675 and P20 GM104320).

Conflicts of Interest

Jiri Adamec is co-founder of Novilytic and Telimmune. Camila Pereira Braga, Alicia Johnson, and Pedro de Magalhães Padilha have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Adamec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Johnson, A., Braga, C., de Magalhães Padilha, P., Adamec, J. (2023). Collection of Plasma Samples in Areas with Limited Healthcare Access. In: Greening, D.W., Simpson, R.J. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 2628. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2978-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2978-9_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2977-2

  • Online ISBN: 978-1-0716-2978-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation