Contact-Assisted Threading in Low-Homology Protein Modeling

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2627))

  • 647 Accesses

Abstract

The ability to successfully predict the three-dimensional structure of a protein from its amino acid sequence has made considerable progress in the recent past. The progress is propelled by the improved accuracy of deep learning-based inter-residue contact map predictors coupled with the rising growth of protein sequence databases. Contact map encodes interatomic interaction information that can be exploited for highly accurate prediction of protein structures via contact map threading even for the query proteins that are not amenable to direct homology modeling. As such, contact-assisted threading has garnered considerable research effort. In this chapter, we provide an overview of existing contact-assisted threading methods while highlighting the recent advances and discussing some of the current limitations and future prospects in the application of contact-assisted threading for improving the accuracy of low-homology protein modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338:1042–1046. https://doi.org/10.1126/science.1219021

    Article  CAS  Google Scholar 

  2. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96. https://doi.org/10.1126/science.1065659

    Article  CAS  Google Scholar 

  3. Jones DT, Taylor WR, Thornton JM (1992) A new approach to protein fold recognition. Nature 358:86–89. https://doi.org/10.1038/358086a0

    Article  CAS  Google Scholar 

  4. Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A (2014) Critical assessment of methods of protein structure prediction (CASP) — round x. Proteins 82:1–6. https://doi.org/10.1002/prot.24452

    Article  CAS  Google Scholar 

  5. Wang S, Li W, Zhang R, Liu S, Xu J (2016) CoinFold: a web server for protein contact prediction and contact-assisted protein folding. Nucleic Acids Res 44:W361–W366. https://doi.org/10.1093/nar/gkw307

    Article  CAS  Google Scholar 

  6. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D (2020) Improved protein structure prediction using predicted interresidue orientations. PNAS 117:1496–1503. https://doi.org/10.1073/pnas.1914677117

    Article  CAS  Google Scholar 

  7. Greener JG, Kandathil SM, Jones DT (2019) Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints. Nat Commun 10:1–13. https://doi.org/10.1038/s41467-019-11994-0

    Article  CAS  Google Scholar 

  8. Adhikari B, Bhattacharya D, Cao R, Cheng J (2015) CONFOLD: residue-residue contact-guided ab initio protein folding. Proteins 83:1436–1449. https://doi.org/10.1002/prot.24829

    Article  CAS  Google Scholar 

  9. Adhikari B, Cheng J (2018) CONFOLD2: improved contact-driven ab initio protein structure modeling. BMC Bioinformatics 19:22. https://doi.org/10.1186/s12859-018-2032-6

    Article  CAS  Google Scholar 

  10. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS One 6:e28766. https://doi.org/10.1371/journal.pone.0028766

    Article  CAS  Google Scholar 

  11. Roche R, Bhattacharya S, Bhattacharya D (2020) Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins. PLoS Comput Biol 17:e1008753. https://doi.org/10.1371/journal.pcbi.1008753

    Article  CAS  Google Scholar 

  12. Xu J (2019) Distance-based protein folding powered by deep learning. PNAS 116:16856–16865. https://doi.org/10.1073/pnas.1821309116

    Article  CAS  Google Scholar 

  13. Zhang Y (2008) Progress and challenges in protein structure prediction. Curr Opin Struct Biol 18:342–348. https://doi.org/10.1016/j.sbi.2008.02.004

    Article  CAS  Google Scholar 

  14. Xu J, Li M, Kim D, Xu Y (2003) Raptor: optimal protein threading by linear programming. J Bioinforma Comput Biol 01:95–117. https://doi.org/10.1142/S0219720003000186

    Article  CAS  Google Scholar 

  15. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–1522. https://doi.org/10.1038/nprot.2012.085

    Article  CAS  Google Scholar 

  16. Bhattacharya S, Bhattacharya D (2019) Does inclusion of residue-residue contact information boost protein threading? Proteins 87:596–606. https://doi.org/10.1002/prot.25684

    Article  CAS  Google Scholar 

  17. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  Google Scholar 

  18. Wu S, Zhang Y (2008) MUSTER: improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins 72:547–556. https://doi.org/10.1002/prot.21945

    Article  CAS  Google Scholar 

  19. Wu S, Zhang Y (2010) Recognizing protein substructure similarity using segmental threading. Structure 18:858–867. https://doi.org/10.1016/j.str.2010.04.007

    Article  CAS  Google Scholar 

  20. Buchan DWA, Jones DT (2017) EigenTHREADER: analogous protein fold recognition by efficient contact map threading. Bioinformatics 33:2684–2690. https://doi.org/10.1093/bioinformatics/btx217

    Article  CAS  Google Scholar 

  21. Lobley A, Sadowski MI, Jones DT (2009) pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics 25:1761–1767. https://doi.org/10.1093/bioinformatics/btp302

    Article  CAS  Google Scholar 

  22. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  Google Scholar 

  23. Moult J (1996) The current state of the art in protein structure prediction. Curr Opin Biotechnol 7:422–427. https://doi.org/10.1016/S0958-1669(96)80118-2

    Article  CAS  Google Scholar 

  24. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170. https://doi.org/10.1126/science.1853201

    Article  CAS  Google Scholar 

  25. Petrey D, Honig B (2005) Protein structure prediction: inroads to biology. Mol Cell 20:811–819. https://doi.org/10.1016/j.molcel.2005.12.005

    Article  CAS  Google Scholar 

  26. Kinch LN, Grishin NV (2002) Evolution of protein structures and functions. Curr Opin Struct Biol 12:400–408. https://doi.org/10.1016/S0959-440X(02)00338-X

    Article  CAS  Google Scholar 

  27. Zhang Y, Skolnick J (2005) The protein structure prediction problem could be solved using the current PDB library. PNAS 102:1029–1034. https://doi.org/10.1073/pnas.0407152101

    Article  CAS  Google Scholar 

  28. Yang Y, Faraggi E, Zhao H, Zhou Y (2011) Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics 27:2076–2082. https://doi.org/10.1093/bioinformatics/btr350

    Article  CAS  Google Scholar 

  29. Ma J, Wang S, Zhao F, Xu J (2013) Protein threading using context-specific alignment potential. Bioinformatics 29:i257–i265. https://doi.org/10.1093/bioinformatics/btt210

    Article  CAS  Google Scholar 

  30. Peng J, Xu J (2010) Low-homology protein threading. Bioinformatics 26:i294–i300. https://doi.org/10.1093/bioinformatics/btq192

    Article  CAS  Google Scholar 

  31. Söding J (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960. https://doi.org/10.1093/bioinformatics/bti125

    Article  Google Scholar 

  32. Peng J, Xu J (2009) Boosting protein threading accuracy. In: Batzoglou S (ed) Research in computational molecular biology. Springer, Berlin Heidelberg, pp 31–45

    Chapter  Google Scholar 

  33. Ma J, Peng J, Wang S, Xu J (2012) A conditional neural fields model for protein threading. Bioinformatics 28:i59–i66. https://doi.org/10.1093/bioinformatics/bts213

    Article  CAS  Google Scholar 

  34. Jaroszewski L, Rychlewski L, Li Z, Li W, Godzik A (2005) FFAS03: a server for profile–profile sequence alignments. Nucleic Acids Res 33:W284–W288. https://doi.org/10.1093/nar/gki418

    Article  CAS  Google Scholar 

  35. Rychlewski L, Li W, Jaroszewski L, Godzik A (2000) Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci 9:232–241. https://doi.org/10.1110/ps.9.2.232

    Article  CAS  Google Scholar 

  36. Cheng J, Baldi P (2006) A machine learning information retrieval approach to protein fold recognition. Bioinformatics 22:1456–1463. https://doi.org/10.1093/bioinformatics/btl102

    Article  CAS  Google Scholar 

  37. Marti-Renom MA, Madhusudhan MS, Sali A (2004) Alignment of protein sequences by their profiles. Protein Sci 13:1071–1087. https://doi.org/10.1110/ps.03379804

    Article  CAS  Google Scholar 

  38. Ginalski K, Pas J, Wyrwicz LS, Grotthuss M v, Bujnicki JM, Rychlewski L (2003) ORFeus: detection of distant homology using sequence profiles and predicted secondary structure. Nucleic Acids Res 31:3804–3807. https://doi.org/10.1093/nar/gkg504

    Article  CAS  Google Scholar 

  39. Zhou H, Zhou Y (2005) Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 58:321–328. https://doi.org/10.1002/prot.20308

    Article  CAS  Google Scholar 

  40. Jones DT (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences 11 Edited by B. Honig. J Mol Biol 287:797–815. https://doi.org/10.1006/jmbi.1999.2583

    Article  CAS  Google Scholar 

  41. Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35:3375–3382. https://doi.org/10.1093/nar/gkm251

    Article  CAS  Google Scholar 

  42. Gniewek P, Kolinski A, Kloczkowski A, Gront D (2014) BioShell-threading: versatile Monte Carlo package for protein 3D threading. BMC Bioinformatics 15:22. https://doi.org/10.1186/1471-2105-15-22

    Article  CAS  Google Scholar 

  43. Rost B, Schneider R, Sander C (1997) Protein fold recognition by prediction-based threading 11 Edited by F. E. Cohen. J Mol Biol 270:471–480. https://doi.org/10.1006/jmbi.1997.1101

    Article  CAS  Google Scholar 

  44. Olmea O, Rost B, Valencia A (1999) Effective use of sequence correlation and conservation in fold recognition 11 Edited by J. M. Thornton. J Mol Biol 293:1221–1239. https://doi.org/10.1006/jmbi.1999.3208

    Article  CAS  Google Scholar 

  45. Peng J, Xu J (2011) A multiple-template approach to protein threading. Proteins 79:1930–1939. https://doi.org/10.1002/prot.23016

    Article  CAS  Google Scholar 

  46. Xu Y, Xu D (2000) Protein threading using PROSPECT: design and evaluation. Proteins 40:343–354. https://doi.org/10.1002/1097-0134(20000815)40:3<343::AID-PROT10>3.0.CO;2-S

    Article  CAS  Google Scholar 

  47. Ma J, Wang S, Wang Z, Xu J (2014) MRFalign: protein homology detection through alignment of Markov random fields. PLoS Comput Biol 10:e1003500. https://doi.org/10.1371/journal.pcbi.1003500

    Article  CAS  Google Scholar 

  48. Yan R, Xu D, Yang J, Walker S, Zhang Y (2013) A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Sci Rep 3:2619. https://doi.org/10.1038/srep02619

    Article  Google Scholar 

  49. Lee SY, Skolnick J (2010) TASSER_WT: a protein structure prediction algorithm with accurate predicted contact restraints for difficult protein targets. Biophys J 99:3066–3075. https://doi.org/10.1016/j.bpj.2010.09.007

    Article  CAS  Google Scholar 

  50. Jones DT, Buchan DWA, Cozzetto D, Pontil M (2012) PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 28:184–190. https://doi.org/10.1093/bioinformatics/btr638

    Article  CAS  Google Scholar 

  51. Seemayer S, Gruber M, Söding J (2014) CCMpred—fast and precise prediction of protein residue–residue contacts from correlated mutations. Bioinformatics 30:3128–3130. https://doi.org/10.1093/bioinformatics/btu500

    Article  CAS  Google Scholar 

  52. Kaján L, Hopf TA, Kalaš M, Marks DS, Rost B (2014) FreeContact: fast and free software for protein contact prediction from residue co-evolution. BMC Bioinformatics 15:85. https://doi.org/10.1186/1471-2105-15-85

    Article  CAS  Google Scholar 

  53. Jones DT, Singh T, Kosciolek T, Tetchner S (2015) MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics 31:999–1006. https://doi.org/10.1093/bioinformatics/btu791

    Article  CAS  Google Scholar 

  54. Adhikari B, Hou J, Cheng J (2018) DNCON2: improved protein contact prediction using two-level deep convolutional neural networks. Bioinformatics 34:1466–1472. https://doi.org/10.1093/bioinformatics/btx781

    Article  CAS  Google Scholar 

  55. Hanson J, Paliwal K, Litfin T, Yang Y, Zhou Y (2018) Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks. Bioinformatics 34:4039–4045. https://doi.org/10.1093/bioinformatics/bty481

    Article  CAS  Google Scholar 

  56. Wang S, Sun S, Li Z, Zhang R, Xu J (2017) Accurate De novo prediction of protein contact map by ultra-deep learning model. PLoS Comput Biol 13:e1005324. https://doi.org/10.1371/journal.pcbi.1005324

    Article  CAS  Google Scholar 

  57. Ovchinnikov S, Kamisetty H, Baker D (2014) Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information. eLife 3:e02030. https://doi.org/10.7554/eLife.02030

    Article  CAS  Google Scholar 

  58. Wang S, Li Z, Yu Y, Xu J (2017) Folding membrane proteins by deep transfer learning. Cell Syst 5:202–211.e3. https://doi.org/10.1016/j.cels.2017.09.001

    Article  CAS  Google Scholar 

  59. Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa T, Weigt M (2011) Direct-coupling analysis of residue coevolution captures native contacts across many protein families. PNAS 108:E1293–E1301. https://doi.org/10.1073/pnas.1111471108

    Article  Google Scholar 

  60. Kandathil SM, Greener JG, Jones DT (2019) Prediction of interresidue contacts with DeepMetaPSICOV in CASP13. Proteins 87:1092–1099. https://doi.org/10.1002/prot.25779

    Article  CAS  Google Scholar 

  61. He B, Mortuza SM, Wang Y, Shen H-B, Zhang Y (2017) NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers. Bioinformatics 33:2296–2306. https://doi.org/10.1093/bioinformatics/btx164

    Article  CAS  Google Scholar 

  62. Ovchinnikov S, Park H, Varghese N, Huang P-S, Pavlopoulos GA, Kim DE, Kamisetty H, Kyrpides NC, Baker D (2017) Protein structure determination using metagenome sequence data. Science 355:294–298. https://doi.org/10.1126/science.aah4043

    Article  CAS  Google Scholar 

  63. Zheng W, Wuyun Q, Li Y, Mortuza SM, Zhang C, Pearce R, Ruan J, Zhang Y (2019) Detecting distant-homology protein structures by aligning deep neural-network based contact maps. PLoS Comput Biol 15:e1007411. https://doi.org/10.1371/journal.pcbi.1007411

    Article  CAS  Google Scholar 

  64. Du Z, Pan S, Wu Q, Peng Z, Yang J (2020) CATHER: a novel threading algorithm with predicted contacts. Bioinformatics 36:2119–2125. https://doi.org/10.1093/bioinformatics/btz876

    Article  CAS  Google Scholar 

  65. Zhang H, Shen Y (2020) Template-based prediction of protein structure with deep learning. BMC Genomics 21:878. https://doi.org/10.1186/s12864-020-07249-8

    Article  CAS  Google Scholar 

  66. Zheng W, Zhang C, Wuyun Q, Pearce R, Li Y, Zhang Y (2019) LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins. Nucleic Acids Res 47:W429–W436. https://doi.org/10.1093/nar/gkz384

    Article  CAS  Google Scholar 

  67. Remmert M, Biegert A, Hauser A, Söding J (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9:173–175. https://doi.org/10.1038/nmeth.1818

    Article  CAS  Google Scholar 

  68. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405. https://doi.org/10.1093/bioinformatics/16.4.404

    Article  CAS  Google Scholar 

  69. Heffernan R, Yang Y, Paliwal K, Zhou Y (2017) Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility. Bioinformatics 33:2842–2849. https://doi.org/10.1093/bioinformatics/btx218

    Article  CAS  Google Scholar 

  70. Wang S, Peng J, Ma J, Xu J (2016) Protein secondary structure prediction using deep convolutional neural fields. Sci Rep 6:18962. https://doi.org/10.1038/srep18962

    Article  CAS  Google Scholar 

  71. Bhattacharya S, Roche R, Bhattacharya D (2020) DisCovER: distance- and orientation-based covariational threading for weakly homologous proteins. bioRxiv. 2020.01.31.923409. https://doi.org/10.1101/2020.01.31.923409

  72. Wu F, Xu J (2021) Deep template-based protein structure prediction. PLoS Comput Biol 17:e1008954. https://doi.org/10.1371/journal.pcbi.1008954

    Article  CAS  Google Scholar 

  73. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637. https://doi.org/10.1002/bip.360221211

    Article  CAS  Google Scholar 

  74. Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32:W500–W502. https://doi.org/10.1093/nar/gkh429

    Article  CAS  Google Scholar 

  75. Skolnick J, Kihara D (2001) Defrosting the frozen approximation: PROSPECTOR— a new approach to threading. Proteins 42:319–331. https://doi.org/10.1002/1097-0134(20010215)42:3<319::AID-PROT30>3.0.CO;2-A

    Article  CAS  Google Scholar 

  76. Skolnick J, Kihara D, Zhang Y (2004) Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm. Proteins 56:502–518. https://doi.org/10.1002/prot.20106

    Article  CAS  Google Scholar 

  77. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710. https://doi.org/10.1002/prot.20264

    Article  CAS  Google Scholar 

  78. Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallogr A 32:922–923. https://doi.org/10.1107/S0567739476001873

    Article  Google Scholar 

  79. Zemla A (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 31:3370–3374. https://doi.org/10.1093/nar/gkg571

    Article  CAS  Google Scholar 

  80. Mariani V, Biasini M, Barbato A, Schwede T (2013) lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 29:2722–2728. https://doi.org/10.1093/bioinformatics/btt473

    Article  CAS  Google Scholar 

  81. Xu J, Zhang Y (2010) How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 26:889–895. https://doi.org/10.1093/bioinformatics/btq066

    Article  CAS  Google Scholar 

  82. Bienkowska J, Lathrop R (2005) Threading algorithms. In: Encyclopedia of genetics, genomics, proteomics and bioinformatics. American Cancer Society

    Google Scholar 

  83. Xu Y, Xu D, Uberbacher EC (1998) An efficient computational method for globally optimal threading. J Comput Biol 5:597–614. https://doi.org/10.1089/cmb.1998.5.597

    Article  CAS  Google Scholar 

  84. Akutsu T, Miyano S (1999) On the approximation of protein threading. Theor Comput Sci 210:261–275. https://doi.org/10.1016/S0304-3975(98)00089-9

    Article  Google Scholar 

  85. Zhu J, Wang S, Bu D, Xu J (2018) Protein threading using residue co-variation and deep learning. Bioinformatics 34:i263–i273. https://doi.org/10.1093/bioinformatics/bty278

    Article  CAS  Google Scholar 

  86. Venclovas Č (2003) Comparative modeling in CASP5: Progress is evident, but alignment errors remain a significant hindrance. Proteins 53:380–388. https://doi.org/10.1002/prot.10591

    Article  CAS  Google Scholar 

  87. Shibberu Y, Holder A, Lutz K (2010) Fast protein structure alignment. In: Borodovsky M, Gogarten JP, Przytycka TM, Rajasekaran S (eds) Bioinformatics research and applications. Springer, Berlin, Heidelberg, pp 152–165

    Chapter  Google Scholar 

  88. Shibberu Y, Holder A (2011) A spectral approach to protein structure alignment. IEEE/ACM Trans Comput Biol Bioinform 8:867–875. https://doi.org/10.1109/TCBB.2011.24

    Article  Google Scholar 

  89. Teichert F, Bastolla U, Porto M (2007) SABERTOOTH: protein structural alignment based on a vectorial structure representation. BMC Bioinformatics 8:425. https://doi.org/10.1186/1471-2105-8-425

    Article  CAS  Google Scholar 

  90. Di Lena P, Fariselli P, Margara L, Vassura M, Casadio R (2010) Fast overlap** of protein contact maps by alignment of eigenvectors. Bioinformatics 26:2250–2258. https://doi.org/10.1093/bioinformatics/btq402

    Article  CAS  Google Scholar 

  91. Teichert F, Minning J, Bastolla U, Porto M (2010) High quality protein sequence alignment by combining structural profile prediction and profile alignment using SABERTOOTH. BMC Bioinformatics 11:251. https://doi.org/10.1186/1471-2105-11-251

    Article  CAS  Google Scholar 

  92. Malod-Dognin N, Pržulj N (2014) GR-align: fast and flexible alignment of protein 3D structures using graphlet degree similarity. Bioinformatics 30:1259–1265. https://doi.org/10.1093/bioinformatics/btu020

    Article  CAS  Google Scholar 

  93. Skolnick J, Zhou H (2017) Why is there a glass ceiling for threading based protein structure prediction methods? J Phys Chem B 121:3546–3554. https://doi.org/10.1021/acs.jpcb.6b09517

    Article  CAS  Google Scholar 

  94. Li Y, Hu J, Zhang C, Yu D-J, Zhang Y (2019) ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks. Bioinformatics 35:4647–4655. https://doi.org/10.1093/bioinformatics/btz291

    Article  CAS  Google Scholar 

  95. Taylor WR (1999) Protein structure comparison using iterated double dynamic programming. Protein Sci 8:654–665. https://doi.org/10.1110/ps.8.3.654

    Article  CAS  Google Scholar 

  96. Kamisetty H, Ovchinnikov S, Baker D (2013) Assessing the utility of coevolution-based residue–residue contact predictions in a sequence- and structure-rich era. PNAS 110:15674–15679. https://doi.org/10.1073/pnas.1314045110

    Article  Google Scholar 

  97. Söding J (2017) Big-data approaches to protein structure prediction. Science 355:248–249. https://doi.org/10.1126/science.aal4512

    Article  Google Scholar 

  98. Wu Q, Peng Z, Anishchenko I, Cong Q, Baker D, Yang J (2020) Protein contact prediction using metagenome sequence data and residual neural networks. Bioinformatics 36:41–48. https://doi.org/10.1093/bioinformatics/btz477

    Article  CAS  Google Scholar 

  99. Bhattacharya S, Bhattacharya D (2020) Evaluating the significance of contact maps in low-homology protein modeling using contact-assisted threading. Sci Rep 10:2908. https://doi.org/10.1038/s41598-020-59834-2

    Article  CAS  Google Scholar 

  100. Suzek BE, Wang Y, Huang H, PB MG, Wu CH, The UniProt Consortium (2015) UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31:926–932. https://doi.org/10.1093/bioinformatics/btu739

    Article  CAS  Google Scholar 

  101. The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  102. Mirdita M, von den Driesch L, Galiez C, Martin MJ, Söding J, Steinegger M (2017) Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res 45:D170–D176. https://doi.org/10.1093/nar/gkw1081

    Article  CAS  Google Scholar 

  103. Mitchell AL, Scheremetjew M, Denise H, Potter S, Tarkowska A, Qureshi M, Salazar GA, Pesseat S, Boland MA, Hunter FMI, ten Hoopen P, Alako B, Amid C, Wilkinson DJ, Curtis TP, Cochrane G, Finn RD (2018) EBI metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res 46:D726–D735. https://doi.org/10.1093/nar/gkx967

    Article  CAS  Google Scholar 

  104. Markowitz VM, Chen I-MA, Chu K, Szeto E, Palaniappan K, Pillay M, Ratner A, Huang J, Pagani I, Tringe S, Huntemann M, Billis K, Varghese N, Tennessen K, Mavromatis K, Pati A, Ivanova NN, Kyrpides NC (2014) IMG/M 4 version of the integrated metagenome comparative analysis system. Nucleic Acids Res 42:D568–D573. https://doi.org/10.1093/nar/gkt919

    Article  CAS  Google Scholar 

  105. Steinegger M, Söding J (2018) Clustering huge protein sequence sets in linear time. Nat Commun 9:2542. https://doi.org/10.1038/s41467-018-04964-5

    Article  CAS  Google Scholar 

  106. Wang Y, Shi Q, Yang P, Zhang C, Mortuza SM, Xue Z, Ning K, Zhang Y (2019) Fueling ab initio folding with marine metagenomics enables structure and function predictions of new protein families. Genome Biol 20:229. https://doi.org/10.1186/s13059-019-1823-z

    Article  CAS  Google Scholar 

  107. Steinegger M, Mirdita M, Söding J (2019) Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold. Nat Methods 16:603–606. https://doi.org/10.1038/s41592-019-0437-4

    Article  CAS  Google Scholar 

  108. Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, Crusoe MR, Kale V, Potter SC, Richardson LJ, Sakharova E, Scheremetjew M, Korobeynikov A, Shlemov A, Kunyavskaya O, Lapidus A, Finn RD (2020) MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res 48:D570–D578. https://doi.org/10.1093/nar/gkz1035

    Article  CAS  Google Scholar 

  109. Zhang C, Zheng W, Mortuza SM, Li Y, Zhang Y (2020) DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins. Bioinformatics 36:2105–2112. https://doi.org/10.1093/bioinformatics/btz863

    Article  CAS  Google Scholar 

  110. Ding W, Gong H (2020) Predicting the real-valued inter-residue distances for proteins. Adv Sci 7:2001314. https://doi.org/10.1002/advs.202001314

    Article  CAS  Google Scholar 

  111. Adhikari B (2020) A fully open-source framework for deep learning protein real-valued distances. Sci Rep 10:13374. https://doi.org/10.1038/s41598-020-70181-0

    Article  CAS  Google Scholar 

  112. Wu T, Guo Z, Hou J, Cheng J (2020) DeepDist: real-value inter-residue distance prediction with deep residual convolutional network. bioRxiv. 2020.03.17.995910. https://doi.org/10.1101/2020.03.17.995910

  113. Kukic P, Mirabello C, Tradigo G, Walsh I, Veltri P, Pollastri G (2014) Toward an accurate prediction of inter-residue distances in proteins using 2D recursive neural networks. BMC Bioinformatics 15:6. https://doi.org/10.1186/1471-2105-15-6

    Article  CAS  Google Scholar 

  114. Larsson P, Wallner B, Lindahl E, Elofsson A (2008) Using multiple templates to improve quality of homology models in automated homology modeling. Protein Sci 17:990–1002. https://doi.org/10.1110/ps.073344908

    Article  CAS  Google Scholar 

  115. Cheng J (2008) A multi-template combination algorithm for protein comparative modeling. BMC Struct Biol 8:18. https://doi.org/10.1186/1472-6807-8-18

    Article  CAS  Google Scholar 

  116. Fernandez-Fuentes N, Madrid-Aliste CJ, Rai BK, Fajardo JE, Fiser A (2007) M4T: a comparative protein structure modeling server. Nucleic Acids Res 35:W363–W368. https://doi.org/10.1093/nar/gkm341

    Article  Google Scholar 

  117. Rykunov D, Steinberger E, Madrid-Aliste CJ, Fiser A (2009) Improved scoring function for comparative modeling using the M4T method. J Struct Funct Genom 10:95–99. https://doi.org/10.1007/s10969-008-9044-9

    Article  CAS  Google Scholar 

  118. Joo K, Lee J, Lee S, Seo J-H, Lee SJ, Lee J (2007) High accuracy template based modeling by global optimization. Proteins 69:83–89. https://doi.org/10.1002/prot.21628

    Article  CAS  Google Scholar 

  119. Meier A, Söding J (2015) Automatic prediction of protein 3D structures by probabilistic multi-template homology modeling. PLoS Comput Biol 11:e1004343. https://doi.org/10.1371/journal.pcbi.1004343

    Article  CAS  Google Scholar 

  120. Ginalski K, Elofsson A, Fischer D, Rychlewski L (2003) 3D-jury: a simple approach to improve protein structure predictions. Bioinformatics 19:1015–1018. https://doi.org/10.1093/bioinformatics/btg124

    Article  CAS  Google Scholar 

  121. Derevyanko G, Grudinin S, Bengio Y, Lamoureux G (2018) Deep convolutional networks for quality assessment of protein folds. Bioinformatics 34:4046–4053. https://doi.org/10.1093/bioinformatics/bty494

    Article  CAS  Google Scholar 

  122. Karasikov M, Pagès G, Grudinin S (2019) Smooth orientation-dependent scoring function for coarse-grained protein quality assessment. Bioinformatics 35:2801–2808. https://doi.org/10.1093/bioinformatics/bty1037

    Article  CAS  Google Scholar 

  123. Olechnovič K, Venclovas Č (2017) VoroMQA: assessment of protein structure quality using interatomic contact areas. Proteins 85:1131–1145. https://doi.org/10.1002/prot.25278

    Article  CAS  Google Scholar 

  124. Ray A, Lindahl E, Wallner B (2012) Improved model quality assessment using ProQ2. BMC Bioinformatics 13:224. https://doi.org/10.1186/1471-2105-13-224

    Article  Google Scholar 

  125. Uziela K, Shu N, Wallner B, Elofsson A (2016) ProQ3: Improved model quality assessments using Rosetta energy terms. Sci Rep 6:33509. https://doi.org/10.1038/srep33509

    Article  CAS  Google Scholar 

  126. Uziela K, Menéndez Hurtado D, Shu N, Wallner B, Elofsson A (2017) ProQ3D: improved model quality assessments using deep learning. Bioinformatics 33:1578–1580. https://doi.org/10.1093/bioinformatics/btw819

    Article  CAS  Google Scholar 

  127. Sato R, Ishida T (2019) Protein model accuracy estimation based on local structure quality assessment using 3D convolutional neural network. PLoS One 14:e0221347. https://doi.org/10.1371/journal.pone.0221347

    Article  CAS  Google Scholar 

  128. Pagès G, Charmettant B, Grudinin S (2019) Protein model quality assessment using 3D oriented convolutional neural networks. Bioinformatics 35:3313–3319. https://doi.org/10.1093/bioinformatics/btz122

    Article  CAS  Google Scholar 

  129. Shuvo MH, Bhattacharya S, Bhattacharya D (2020) QDeep: distance-based protein model quality estimation by residue-level ensemble error classifications using stacked deep residual neural networks. Bioinformatics 36:i285–i291. https://doi.org/10.1093/bioinformatics/btaa455

    Article  CAS  Google Scholar 

  130. Baldassarre F, Menéndez Hurtado D, Elofsson A, Azizpour H (2020) GraphQA: protein model quality assessment using graph convolutional networks. Bioinformatics 37:360. https://doi.org/10.1093/bioinformatics/btaa714

    Article  CAS  Google Scholar 

  131. Alapati R, Bhattacharya D (2018) clustQ: efficient protein decoy clustering using superposition-free weighted internal distance comparisons. In: Proceedings of the 2018 ACM international conference on bioinformatics, computational biology, and health informatics. Association for Computing Machinery, New York, pp 307–314

    Chapter  Google Scholar 

  132. Benkert P, Tosatto SCE, Schwede T (2009) Global and local model quality estimation at CASP8 using the scoring functions QMEAN and QMEANclust. Proteins 77:173–180. https://doi.org/10.1002/prot.22532

    Article  CAS  Google Scholar 

  133. Cheng J, Wang Z, Tegge AN, Eickholt J (2009) Prediction of global and local quality of CASP8 models by MULTICOM series. Proteins 77:181–184. https://doi.org/10.1002/prot.22487

    Article  CAS  Google Scholar 

  134. McGuffin LJ, Roche DB (2010) Rapid model quality assessment for protein structure predictions using the comparison of multiple models without structural alignments. Bioinformatics 26:182–188. https://doi.org/10.1093/bioinformatics/btp629

    Article  CAS  Google Scholar 

  135. Bhattacharya D (2019) refineD: improved protein structure refinement using machine learning based restrained relaxation. Bioinformatics 35:3320–3328. https://doi.org/10.1093/bioinformatics/btz101

    Article  CAS  Google Scholar 

  136. Wang D, Geng L, Zhao Y-J, Yang Y, Huang Y, Zhang Y, Shen H-B (2020) Artificial intelligence-based multi-objective optimization protocol for protein structure refinement. Bioinformatics 36:437–448. https://doi.org/10.1093/bioinformatics/btz544

    Article  CAS  Google Scholar 

  137. Lee GR, Won J, Heo L, Seok C (2019) GalaxyRefine2: simultaneous refinement of inaccurate local regions and overall protein structure. Nucleic Acids Res 47:W451–W455. https://doi.org/10.1093/nar/gkz288

    Article  CAS  Google Scholar 

  138. Heo L, Feig M (2020) High-accuracy protein structures by combining machine-learning with physics-based refinement. Proteins 88:637–642. https://doi.org/10.1002/prot.25847

    Article  CAS  Google Scholar 

  139. Park H, Lee GR, Kim DE, Anishchenko I, Cong Q, Baker D (2019) High-accuracy refinement using Rosetta in CASP13. Proteins 87:1276–1282. https://doi.org/10.1002/prot.25784

    Article  CAS  Google Scholar 

  140. Heo L, Arbour CF, Feig M (2019) Driven to near-experimental accuracy by refinement via molecular dynamics simulations. Proteins 87:1263–1275. https://doi.org/10.1002/prot.25759

    Article  CAS  Google Scholar 

  141. Bhattacharya D, Cheng J (2013) 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins 81:119–131. https://doi.org/10.1002/prot.24167

    Article  CAS  Google Scholar 

  142. Bhattacharya D, Nowotny J, Cao R, Cheng J (2016) 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res 44:W406–W409. https://doi.org/10.1093/nar/gkw336

    Article  CAS  Google Scholar 

  143. Bhattacharya D, Cheng J (2013) i3Drefine software for protein 3D structure refinement and its assessment in CASP10. PLoS One 8:e69648. https://doi.org/10.1371/journal.pone.0069648

    Article  CAS  Google Scholar 

  144. Bhattacharya D, Cheng J (2013) Protein structure refinement by iterative fragment exchange. In: Proceedings of the international conference on bioinformatics, computational biology and biomedical informatics. Association for Computing Machinery, New York, pp 106–114. https://doi.org/10.1145/2506583.2506601

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation (IIS2030722, DBI1942692 to DB) and the National Institute of General Medical Sciences (R35GM138146 to DB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debswapna Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhattacharya, S., Roche, R., Shuvo, M.H., Moussad, B., Bhattacharya, D. (2023). Contact-Assisted Threading in Low-Homology Protein Modeling. In: Filipek, S. (eds) Homology Modeling. Methods in Molecular Biology, vol 2627. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2974-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2974-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2973-4

  • Online ISBN: 978-1-0716-2974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation