Map** of RNA Modifications by Direct Nanopore Sequencing and JACUSA2

  • Protocol
  • First Online:
Computational Epigenomics and Epitranscriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2624))

Abstract

RNA modifications exist in all kingdom of life. Several different types of base or ribose modifications are now summarized under the term “epitranscriptome.” With the advent of high-throughput sequencing technologies, much progress has been made in understanding RNA modification biology and how these modifications can influence many aspects of RNA life. The most widespread internal modification on mRNA is m6A, which has been implicated in physiological processes as well as disease pathogenesis. Here, we provide a workflow for the map** of m6A sites using Nanopore direct RNA sequencing data. Our strategy employs pairwise comparison of basecalling error profiles with JACUSA2. We outline a general strategy for RNA modification detection on mRNA and describe two specific use cases on m6A detection in detail. Use case 1: a sample of interest with modifications (e.g., “wild-type” sample) is compared to a sample lacking a specific modification type (e.g., “knockout” sample, here METTL3-KO) or Use case 2: a sample of interest with modifications is compared to a sample lacking all modifications (e.g., in vitro transcribed cDNA). We provide a detailed protocol on experimental and computational aspects. Extensive online material provides a snakemake pipeline to identify m6A positions in mRNA and to validate the results against a miCLIP-derived m6A reference set. The general strategy is flexible and can be easily adapted by users in different application scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atlasi Y, Stunnenberg HG (2017) The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet 18(11):643–658. https://doi.org/10.1038/nrg.2017.57

    Article  CAS  PubMed  Google Scholar 

  2. Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349. https://doi.org/10.1146/annurev-biochem-060208-105251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frye M, Harada BT, Behm M, He C (2018) RNA modifications modulate gene expression during development. Science 361(6409):1346–1349. https://doi.org/10.1126/science.aau1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Worpenberg L, Paolantoni C, Roignant J-Y (2022) Functional interplay within the epitranscriptome: reality or fiction? BioEssays News Rev Mol Cell Dev Biol 44(2):e2100174. https://doi.org/10.1002/bies.202100174

    Article  CAS  Google Scholar 

  5. Roundtree IA, Evans ME, Pan T, He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169(7):1187–1200. https://doi.org/10.1016/j.cell.2017.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anreiter I, Mir Q, Simpson JT, Janga SC, Soller M (2021) New twists in detecting mRNA modification dynamics. Trends Biotechnol 39(1):72–89. https://doi.org/10.1016/j.tibtech.2020.06.002

    Article  CAS  PubMed  Google Scholar 

  7. Roignant J-Y, Soller M (2017) m, javax.xml.bind.JAXBElement@8cec19d, A in mRNA: an ancient mechanism for fine-tuning gene expression. Trends Genet TIG 33(6):380–390. https://doi.org/10.1016/j.tig.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  8. Zaccara S, Ries RJ, Jaffrey SR (2019) Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 20(10):608–624. https://doi.org/10.1038/s41580-019-0168-5

    Article  CAS  PubMed  Google Scholar 

  9. Shi H, Wei J, He C (2019) Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell 74(4):640–650. https://doi.org/10.1016/j.molcel.2019.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garcias Morales D, Reyes JL (2021) A birds’-eye view of the activity and specificity of the mRNA m, javax.xml.bind.JAXBElement@6d66739e, A methyltransferase complex. Wiley Interdiscip Rev RNA 12(1):e1618. https://doi.org/10.1002/wrna.1618

    Article  CAS  PubMed  Google Scholar 

  11. Jia G et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885–887. https://doi.org/10.1038/nchembio.687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng G et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29. https://doi.org/10.1016/j.molcel.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  13. Dominissini D et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206. https://doi.org/10.1038/nature11112

    Article  CAS  PubMed  Google Scholar 

  14. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149(7):1635–1646. https://doi.org/10.1016/j.cell.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ke S et al (2015) A majority of m6A residues are in the last exons, allowing the potential for 3’ UTR regulation. Genes Dev 29(19):2037–2053. https://doi.org/10.1101/gad.269415.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adhikari S, **ao W, Zhao Y-L, Yang Y-G (2016) m(6)A: Signaling for mRNA splicing. RNA Biol 13(9):756–759. https://doi.org/10.1080/15476286.2016.1201628

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang X et al (2015) N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161(6):1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang X et al (2014) N 6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505(7481):117–120

    Article  PubMed  Google Scholar 

  19. Du H et al (2016) YTHDF2 destabilizes m 6 A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat Commun 7(1):1–11

    Article  Google Scholar 

  20. Patil DP, Pickering BF, Jaffrey SR (2018) Reading m6A in the transcriptome: m6A-binding proteins. Trends Cell Biol 28(2):113–127

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Z et al (2021) Systematic calibration of epitranscriptomic maps using a synthetic modification-free RNA library. Nat Methods 18(10):1213–1222

    Article  CAS  PubMed  Google Scholar 

  22. Minimap2. [Online]. Available: https://github.com/lh3/minimap2

  23. Piechotta M, Wang Q, Altmüller J, Dieterich C (2021) RNA modification map** with JACUSA2. bioRxiv

    Google Scholar 

  24. Köster J, Rahmann S (2012) Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28(19):2520–2522

    Article  PubMed  Google Scholar 

  25. Pratanwanich PN et al (2021) Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat Biotechnol 39(11):1394–1402

    Article  CAS  PubMed  Google Scholar 

  26. Boulias K et al (2019) Identification of the m6Am methyltransferase PCIF1 reveals the location and functions of m6Am in the transcriptome. Mol Cell 75(3):631–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koh CW, Goh YT, Goh WS (2019) Atlas of quantitative single-base-resolution N 6-methyl-adenine methylomes. Nat Commun 10(1):1–15

    Article  Google Scholar 

  28. Körtel N et al (2021) Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning. bioRxiv:2020–2012

    Google Scholar 

  29. JACUSA2 manual. 2021. [Online]. Available: https://github.com/dieterich-lab/JACUSA2

  30. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  CAS  PubMed  Google Scholar 

  31. Frigyesi A, Höglund M (2008) Non-negative matrix factorization for the analysis of complex gene expression data: identification of clinically relevant tumor subtypes. Cancer Inform 6:CIN-S606

    Article  Google Scholar 

  32. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  33. Brunet J-P, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci 101(12):4164–4169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Harald Wilhemi for testing the snakemake pipeline. This work was supported by DFG SPP 1784 (DI1501/11-1) and DFG TRR 319 – RMaP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Dieterich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lemsara, A., Dieterich, C., Naarmann-de Vries, I.S. (2023). Map** of RNA Modifications by Direct Nanopore Sequencing and JACUSA2. In: Oliveira, P.H. (eds) Computational Epigenomics and Epitranscriptomics. Methods in Molecular Biology, vol 2624. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2962-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2962-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2961-1

  • Online ISBN: 978-1-0716-2962-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation