Predicting Pseudouridine Sites with Porpoise

  • Protocol
  • First Online:
Computational Epigenomics and Epitranscriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2624))

Abstract

Pseudouridine is a ubiquitous RNA modification and plays a crucial role in many biological processes. However, it remains a challenging task to identify pseudouridine sites using expensive and time-consuming experimental research. To this end, we present Porpoise, a computational approach to identify pseudouridine sites from RNA sequence data. Porpoise builds on a stacking ensemble learning framework with several informative features and achieves competitive performance compared with state-of-the-art approaches. This protocol elaborates on step-by-step use and execution of the local stand-alone version and the webserver of Porpoise. In addition, we also provide a general machine learning framework that can help identify the optimal stacking ensemble learning model using different combinations of feature-based features. This general machine learning framework can facilitate users to build their pseudouridine predictors using their in-house datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basak A, Query CC (2014) A pseudouridine residue in the spliceosome core is part of the filamentous growth program in yeast. Cell Rep 8(4):966–973. https://doi.org/10.1016/j.celrep.2014.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515(7525):143–146. https://doi.org/10.1038/nature13802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Charette M, Gray MW (2000) Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49(5):341–351. https://doi.org/10.1080/152165400410182

    Article  CAS  PubMed  Google Scholar 

  4. Davis DR, Veltri CA, Nielsen L (1998) An RNA model system for investigation of pseudouridine stabilization of the codon-anticodon interaction in tRNALys, tRNAHis and tRNATyr. J Biomol Struct Dyn 15(6):1121–1132. https://doi.org/10.1080/07391102.1998.10509006

    Article  CAS  PubMed  Google Scholar 

  5. Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM, Thompson SR (2011) rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell 44(4):660–666. https://doi.org/10.1016/j.molcel.2011.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma X, Zhao X, Yu YT (2003) Pseudouridylation (Ψ) of U2 snRNA in S. cerevisiae is catalyzed by an RNA-independent mechanism. EMBO J 22(8):1889–1897. https://doi.org/10.1038/sj.emboj.7600718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mei Y, Liao J, Shen J, Yu L, Liu B, Liu L, Li R, Ji L, Dorsey S, Jiang Z (2012) Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene 31(22):2794–2804. https://doi.org/10.1038/onc.2011.449

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11(8):592–597. https://doi.org/10.1038/nchembio.1836

    Article  CAS  PubMed  Google Scholar 

  9. Li Y-H, Zhang G, Cui Q (2015) PPUS: a web server to predict PUS-specific pseudouridine sites. Bioinformatics 31(20):3362–3364. https://doi.org/10.1093/bioinformatics/btv366

    Article  CAS  PubMed  Google Scholar 

  10. Chen W, Tang H, Ye J, Lin H, Chou K-C (2016) iRNA-PseU: identifying RNA pseudouridine sites. Mol Ther Nucleic Acids 5:e332. https://doi.org/10.1038/mtna.2016.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bi Y, ** D, Jia C (2020) EnsemPseU: identifying pseudouridine sites with an ensemble approach. IEEE Access 8:79376–79382. https://doi.org/10.1109/ACCESS.2020.2989469

    Article  Google Scholar 

  12. He J, Fang T, Zhang Z, Huang B, Zhu X, **ong Y (2018) PseUI: Pseudouridine sites identification based on RNA sequence information. BMC Bioinformatics 19(1):1–11. https://doi.org/10.1186/s12859-018-2321-0

    Article  CAS  Google Scholar 

  13. Khan SM, He F, Wang D, Chen Y, Xu D (2020) MU-PseUDeep: a deep learning method for prediction of pseudouridine sites. Comput Struct Biotechnol J 18:1877–1883. https://doi.org/10.1016/j.csbj.2020.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu K, Chen W, Lin H (2020) XG-PseU: an eXtreme gradient boosting based method for identifying pseudouridine sites. Mol Gen Genomics 295(1):13–21. https://doi.org/10.1007/s00438-019-01600-9

    Article  CAS  Google Scholar 

  15. Lv Z, Zhang J, Ding H, Zou Q (2020) RF-PseU: a random forest predictor for RNA pseudouridine sites. Front Bioeng Biotechnol 8:134. https://doi.org/10.3389/fbioe.2020.00134

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tahir M, Tayara H, Chong KT (2019) iPseU-CNN: identifying RNA pseudouridine sites using convolutional neural networks. Mol Ther Nucleic Acids 16:463–470. https://doi.org/10.1016/j.omtn.2019.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song B, Tang Y, Wei Z, Liu G, Su J, Meng J, Chen K (2020) PIANO: a web server for pseudouridine-site (Ψ) identification and functional annotation. Front Genet 11:88. https://doi.org/10.3389/fgene.2020.00088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song B, Chen K, Tang Y, Ma J, Meng J, Wei Z (2020) PSI-MOUSE: predicting mouse pseudouridine sites from sequence and genome-derived features. Evol Bioinform 16:1176934320925752. https://doi.org/10.1177/1176934320925752

    Article  Google Scholar 

  19. Li F, Guo X, ** P, Chen J, **ang D, Song J, Coin LJM (2021) Porpoise: a new approach for accurate prediction of RNA pseudouridine sites. Brief Bioinform. https://doi.org/10.1093/bib/bbab245

  20. Sun W-J, Li J-H, Liu S, Wu J, Zhou H, Qu L-H, Yang J-H (2016) RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Res 44(D1):D259–D265. https://doi.org/10.1093/nar/gkv1036

    Article  CAS  PubMed  Google Scholar 

  21. Chen Z, Zhao P, Li F, Marquez-Lago TT, Leier A, Revote J, Zhu Y, Powell DR, Akutsu T, Webb GI, Chou KC, Smith AI, Daly RJ, Li J, Song J (2020) iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data. Brief Bioinform 21(3):1047–1057. https://doi.org/10.1093/bib/bbz041

    Article  CAS  PubMed  Google Scholar 

  22. Li F, Chen J, Leier A, Marquez-Lago T, Liu Q, Wang Y, Revote J, Smith AI, Akutsu T, Webb GI, Kurgan L, Song J (2020) DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites. Bioinformatics 36(4):1057–1065. https://doi.org/10.1093/bioinformatics/btz721

    Article  CAS  PubMed  Google Scholar 

  23. Li F, Leier A, Liu Q, Wang Y, **ang D, Akutsu T, Webb GI, Smith AI, Marquez-Lago T, Li J, Song J (2020) Procleave: predicting protease-specific substrate cleavage sites by combining sequence and structural information. Genomics Proteomics Bioinformatics 18(1):52–64. https://doi.org/10.1016/j.gpb.2019.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen Z, Zhao P, Li C, Li F, **ang D, Chen YZ, Akutsu T, Daly RJ, Webb GI, Zhao Q, Kurgan L, Song J (2021) iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization. Nucleic Acids Res 49(10):e60. https://doi.org/10.1093/nar/gkab122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li F, Chen J, Ge Z, Wen Y, Yue Y, Hayashida M, Baggag A, Bensmail H, Song J (2021) Computational prediction and interpretation of both general and specific types of promoters in Escherichia coli by exploiting a stacked ensemble-learning framework. Brief Bioinform 22(2):2126–2140. https://doi.org/10.1093/bib/bbaa049

    Article  CAS  PubMed  Google Scholar 

  26. Liu Q, Chen J, Wang Y, Li S, Jia C, Song J, Li F (2021) DeepTorrent: a deep learning-based approach for predicting DNA N4-methylcytosine sites. Brief Bioinform 22(3):bbaa124. https://doi.org/10.1093/bib/bbaa124

    Article  CAS  PubMed  Google Scholar 

  27. Mei S, Li F, **ang D, Ayala R, Faridi P, Webb GI, Illing PT, Rossjohn J, Akutsu T, Croft NP, Purcell AW, Song J (2021) Anthem: a user customised tool for fast and accurate prediction of binding between peptides and HLA class I molecules. Brief Bioinform. https://doi.org/10.1093/bib/bbaa415

  28. Zhu Y, Li F, **ang D, Akutsu T, Song J, Jia C (2020) Computational identification of eukaryotic promoters based on cascaded deep capsule neural networks. Brief Bioinform. https://doi.org/10.1093/bib/bbaa299

  29. Chai D, Jia C, Zheng J, Zou Q, Li F (2021) Staem5: a novel computational approachfor accurate prediction of m5C site. Mol Ther Nucleic Acids 26:1027–1034. https://doi.org/10.1016/j.omtn.2021.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Li F, Xu J, Rong J, Webb GI, Ge Z, Li J, Song J (2022) ASPIRER: a new computational approach for identifying non-classical secreted proteins based on deep learning. Brief Bioinform. https://doi.org/10.1093/bib/bbac031

  31. Li F, Guo X, **ang D, Pitt ME, Bainomugisa A, Coin LJ (2022) Computational analysis and prediction of PE_PGRS proteins using machine learning. Comput Struct Biotechnol J. https://doi.org/10.1016/j.csbj.2022.01.019

  32. Li F, Dong S, Leier A, Han M, Guo X, Xu J, Wang X, Pan S, Jia C, Zhang Y (2022) Positive-unlabeled learning in bioinformatics and computational biology: a brief review. Brief Bioinform 23(1):bbab461. https://doi.org/10.1093/bib/bbab461

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuyi Li or Jiangning Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guo, X., Li, F., Song, J. (2023). Predicting Pseudouridine Sites with Porpoise. In: Oliveira, P.H. (eds) Computational Epigenomics and Epitranscriptomics. Methods in Molecular Biology, vol 2624. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2962-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2962-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2961-1

  • Online ISBN: 978-1-0716-2962-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation