Nuclease Enrichment and qPCR Detection of Rare Nucleotide Variants

  • Protocol
  • First Online:
Clinical Applications of Nucleic Acid Amplification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2621))

Abstract

The emergence of circulating DNA analysis in blood during the past decade has responded to the need for noninvasive alternatives to classical tissue biopsies. This has coincided with the development of techniques that allow the detection of low-frequency allele variants in clinical samples that typically carry very low amounts of fragmented DNA, such as plasma or FFPE samples. Enrichment of rare variants by nuclease-assisted mutant allele enrichment with overlap** probes (NaME-PrO) enables a more sensitive detection of mutations in tissue biopsy samples alongside standard qPCR detection assays. Such sensitivity is normally achieved by other more complex PCR methods, such as TaqMan qPCR and digital droplet PCR (ddPCR). Here we describe a workflow of mutation-specific nuclease-based enrichment combined with a SYBR Green real-time quantitative PCR detection method that provides comparable results to ddPCR. Using a PIK3CA mutation as an example, this combined workflow enables detection and accurate prediction of initial variant allele fraction in samples with a low mutant allele frequency (<1%) and could be applied flexibly to detect other mutations of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hagemann IS (2015) Chapter 1 – Overview of technical aspects and chemistries of next-generation sequencing. In: Kulkarni S, Pfeifer J (eds) Clinical genomics. Academic Press, Boston, pp 3–19. https://doi.org/10.1016/B978-0-12-404748-8.00001-0

    Chapter  Google Scholar 

  2. Sabour L, Sabour M, Ghorbian S (2017) Clinical applications of next-generation sequencing in cancer diagnosis. Pathol Oncol Res 23:225. https://doi.org/10.1007/s12253-016-0124-z

    Article  CAS  PubMed  Google Scholar 

  3. Denis JA, Guillerm E, Coulet F, Larsen AK, Lacorte J-M (2017) The role of BEAMing and digital PCR for multiplexed analysis in molecular oncology in the era of next-generation sequencing. Mol Diagn Ther 21(6):587–600. https://doi.org/10.1007/s40291-017-0287-7

    Article  CAS  PubMed  Google Scholar 

  4. Krypuy M, Newnham GM, Thomas DM, Conron M, Dobrovic A (2006) High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer 6. https://doi.org/10.1186/1471-2407-6-295

  5. Zhao J (2016) A sensitive and practical method to detect the T790M mutation in the epidermal growth factor receptor. Oncol Lett 11. https://doi.org/10.3892/ol.2016.4263

  6. Olmedillas-López S, García-Arranz M, García-Olmo D (2017) Current and emerging applications of droplet digital PCR in oncology. Mol Diagn Ther 21(5):493–510. https://doi.org/10.1007/s40291-017-0278-8

    Article  CAS  PubMed  Google Scholar 

  7. Milbury CA, Li J, Liu P, Makrigiorgos GM (2011) COLD-PCR: improving the sensitivity of molecular diagnostics assays. Expert Rev Mol Diagn 11(2):159–169. https://doi.org/10.1586/erm.10.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ang D, O’Gara R, Schilling A, Beadling C, Warrick A, Troxell ML, Corless CL (2013) Novel method for PIK3CA mutation analysis: locked nucleic acid–PCR sequencing. J Mol Diagn 15(3):312–318. https://doi.org/10.1016/j.jmoldx.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  9. Thierry AR (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumorDNA. Nat Med 20. https://doi.org/10.1038/nm.3511

  10. Alvarez-Garcia V, Bartos C, Keraite I, Trivedi U, Brennan PM, Kersaudy-Kerhoas M, Gharbi K, Oikonomidou O, Leslie NR (2018) A simple and robust real-time qPCR method for the detection of PIK3CA mutations. Sci Rep 8(1):4290. https://doi.org/10.1038/s41598-018-22473-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gorgannezhad L, Umer M, Islam MN, Nguyen N-T, Shiddiky MJA (2018) Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. Lab Chip 18(8):1174–1196. https://doi.org/10.1039/C8LC00100F

    Article  CAS  PubMed  Google Scholar 

  12. Ignatiadis M, Lee M, Jeffrey SS (2015) Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res 21(21):4786. https://doi.org/10.1158/1078-0432.CCR-14-1190

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Chang S, Li G, Sun Y (2017) Application of liquid biopsy in precision medicine: opportunities and challenges. Front Med 11(4):522–527. https://doi.org/10.1007/s11684-017-0526-7

    Article  PubMed  Google Scholar 

  14. Lennon NJ, Adalsteinsson VA, Gabriel SB (2016) Technological considerations for genome-guided diagnosis and management of cancer. Genome Med 8(1):112. https://doi.org/10.1186/s13073-016-0370-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song C, Liu Y, Fontana R, Makrigiorgos A, Mamon H, Kulke MH, Makrigiorgos GM (2016) Elimination of unaltered DNA in mixed clinical samples via nuclease-assisted minor-allele enrichment. Nucleic Acids Res 44(19):e146. https://doi.org/10.1093/nar/gkw650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E, Rolet F, Gillet B, Gongora C, Dechelotte P, Robert B, Del Rio M, Lamy P-J, Bibeau F, Nouaille M, Loriot V, Jarrousse A-S, Molina F, Mathonnet M, Pezet D, Ychou M (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 20:430. https://doi.org/10.1038/nm.3511

    Article  CAS  PubMed  Google Scholar 

  17. Keraite I, Alvarez-Garcia V, Garcia-Murillas I, Beaney M, Turner NC, Bartos C, Oikonomidou O, Kersaudy-Kerhoas M, Leslie NR (2020) PIK3CA mutation enrichment and quantitation from blood and tissue. Sci Rep 10(1):17082. https://doi.org/10.1038/s41598-020-74086-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  19. Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, Jensen S, Medina JE, Hruban C, White JR, Palsgrove DN, Niknafs N, Anagnostou V, Forde P, Naidoo J, Marrone K, Brahmer J, Woodward BD, Husain H, van Rooijen KL, Ørntoft MW, Madsen AH, van de Velde CJH, Verheij M, Cats A, Punt CJA, Vink GR, van Grieken NCT, Koopman M, Fijneman RJA, Johansen JS, Nielsen HJ, Meijer GA, Andersen CL, Scharpf RB, Velculescu VE (2019) Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570(7761):385–389. https://doi.org/10.1038/s41586-019-1272-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors’ work develo** these methods was funded by the Chief Scientist Office (ETM/433) and by Medical Research Scotland (PhD-883-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas R. Leslie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Keraite, I., Alvarez-Garcia, V., Leslie, N.R. (2023). Nuclease Enrichment and qPCR Detection of Rare Nucleotide Variants. In: Myers, M.B., Schandl, C.A. (eds) Clinical Applications of Nucleic Acid Amplification. Methods in Molecular Biology, vol 2621. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2950-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2950-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2949-9

  • Online ISBN: 978-1-0716-2950-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation