In Vitro Generation of Human Cross-Presenting Type 1 Conventional Dendritic Cells (cDC1s) and Plasmacytoid Dendritic Cells (pDCs)

  • Protocol
  • First Online:
Dendritic Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2618))

Abstract

Dendritic cells (DCs) represent one of the most important immune cell subsets in preventing the host from pathogen invasion by promoting both innate and adaptive immunity. Most research on human dendritic cells has focused on the easy-to-obtain dendritic cells derived in vitro from monocytes (MoDCs). However, many questions remain unanswered regarding the role of different dendritic cell types. The investigation of their roles in human immunity is hampered by their rarity and fragility, which especially holds true for type 1 conventional dendritic cells (cDC1s) and for plasmacytoid dendritic cells (pDCs). In vitro differentiation from hematopoietic progenitors emerged as a common way to produce different DC types, but the efficiency and reproducibility of these protocols needed to be improved and the extent to which the DCs generated in vitro resembled their in vivo counterparts required a more rigorous and global assessment. Here, we describe a cost-effective and robust in vitro differentiation system for the production of cDC1s and pDCs equivalent to their blood counterparts, from cord blood CD34+ hematopoietic stem cells (HSCs) cultured on a stromal feeder layer with a combination of cytokines and growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mildner A, Jung S (2014) Development and function of dendritic cell subsets. Immunity 40(5):642–656. https://doi.org/10.1016/j.immuni.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  2. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J (2000) BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165(11):6037–6046. https://doi.org/10.4049/jimmunol.165.11.6037

    Article  CAS  PubMed  Google Scholar 

  3. Vu Manh TP, Bertho N, Hosmalin A, Schwartz-Cornil I, Dalod M (2015) Investigating evolutionary conservation of dendritic cell subset identity and functions. Front Immunol 6:260. https://doi.org/10.3389/fimmu.2015.00260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ, Dunbar PR, Wadley RB, Jeet V, Vulink AJ, Hart DN, Radford KJ (2010) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207(6):1247–1260. https://doi.org/10.1084/jem.20092140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, Henn V, Kloetzel PM, Gurka S, Kroczek RA (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207(6):1273–1281. https://doi.org/10.1084/jem.20100348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Storset AK, Marvel J, Boudinot P, Hosmalin A, Schwartz-Cornil I, Dalod M (2010) The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 207(6):1283–1292. https://doi.org/10.1084/jem.20100223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heger L, Balk S, Luhr JJ, Heidkamp GF, Lehmann CHK, Hatscher L, Purbojo A, Hartmann A, Garcia-Martin F, Nishimura SI, Cesnjevar R, Nimmerjahn F, Dudziak D (2018) CLEC10A is a specific marker for human CD1c(+) dendritic cells and enhances their toll-like receptor 7/8-induced cytokine secretion. Front Immunol 9:744. https://doi.org/10.3389/fimmu.2018.00744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heger L, Hofer TP, Bigley V, de Vries IJM, Dalod M, Dudziak D, Ziegler-Heitbrock L (2020) Subsets of CD1c(+) DCs: dendritic cell versus monocyte lineage. Front Immunol 11:559166. https://doi.org/10.3389/fimmu.2020.559166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tomasello E, Pollet E, Vu Manh TP, Uze G, Dalod M (2014) Harnessing mechanistic knowledge on beneficial versus deleterious IFN-I effects to design innovative immunotherapies targeting cytokine activity to specific cell types. Front Immunol 5:526. https://doi.org/10.3389/fimmu.2014.00526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schoggins JW (2019) Interferon-stimulated genes: what do they all do? Annu Rev Virol 6(1):567–584. https://doi.org/10.1146/annurev-virology-092818-015756

    Article  CAS  PubMed  Google Scholar 

  11. Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis ESC (2021) Dendritic cells revisited. Annu Rev Immunol 39:131. https://doi.org/10.1146/annurev-immunol-061020-053707

    Article  CAS  PubMed  Google Scholar 

  12. Chen XQ, Liu XF, Liu WH, Guo W, Yu Q, Wang CY (2013) Comparative analysis of dendritic cell numbers and subsets between smoking and control subjects in the peripheral blood. Int J Clin Exp Pathol 6(2):290–296

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118. https://doi.org/10.1084/jem.179.4.1109

    Article  CAS  PubMed  Google Scholar 

  14. Tacken PJ, de Vries IJ, Torensma R, Figdor CG (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7(10):790–802. https://doi.org/10.1038/nri2173

    Article  CAS  PubMed  Google Scholar 

  15. Crozat K, Guiton R, Guilliams M, Henri S, Baranek T, Schwartz-Cornil I, Malissen B, Dalod M (2010) Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunol Rev 234(1):177–198. https://doi.org/10.1111/j.0105-2896.2009.00868.x

    Article  CAS  PubMed  Google Scholar 

  16. Robbins SH, Walzer T, Dembele D, Thibault C, Defays A, Bessou G, Xu H, Vivier E, Sellars M, Pierre P, Sharp FR, Chan S, Kastner P, Dalod M (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9(1):R17. https://doi.org/10.1186/gb-2008-9-1-r17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaperot L, Bendriss N, Manches O, Gressin R, Maynadie M, Trimoreau F, Orfeuvre H, Corront B, Feuillard J, Sotto JJ, Bensa JC, Briere F, Plumas J, Jacob MC (2001) Identification of a leukemic counterpart of the plasmacytoid dendritic cells. Blood 97(10):3210–3217. https://doi.org/10.1182/blood.v97.10.3210

    Article  CAS  PubMed  Google Scholar 

  18. Chaperot L, Perrot I, Jacob MC, Blanchard D, Salaun V, Deneys V, Lebecque S, Briere F, Bensa JC, Plumas J (2004) Leukemic plasmacytoid dendritic cells share phenotypic and functional features with their normal counterparts. Eur J Immunol 34(2):418–426. https://doi.org/10.1002/eji.200324531

    Article  CAS  PubMed  Google Scholar 

  19. Maeda T, Murata K, Fukushima T, Sugahara K, Tsuruda K, Anami M, Onimaru Y, Tsukasaki K, Tomonaga M, Moriuchi R, Hasegawa H, Yamada Y, Kamihira S (2005) A novel plasmacytoid dendritic cell line, CAL-1, established from a patient with blastic natural killer cell lymphoma. Int J Hematol 81(2):148–154. https://doi.org/10.1532/ijh97.04116

    Article  PubMed  Google Scholar 

  20. Steinhagen F, McFarland AP, Rodriguez LG, Tewary P, Jarret A, Savan R, Klinman DM (2013) IRF-5 and NF-kappaB p50 co-regulate IFN-beta and IL-6 expression in TLR9-stimulated human plasmacytoid dendritic cells. Eur J Immunol 43(7):1896–1906. https://doi.org/10.1002/eji.201242792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steinhagen F, Rodriguez LG, Tross D, Tewary P, Bode C, Klinman DM (2016) IRF5 and IRF8 modulate the CAL-1 human plasmacytoid dendritic cell line response following TLR9 ligation. Eur J Immunol 46(3):647–655. https://doi.org/10.1002/eji.201545911

    Article  CAS  PubMed  Google Scholar 

  22. Pelka K, Latz E (2013) IRF5, IRF8, and IRF7 in human pDCs – the good, the bad, and the insignificant? Eur J Immunol 43(7):1693–1697. https://doi.org/10.1002/eji.201343739

    Article  CAS  PubMed  Google Scholar 

  23. Ciancanelli MJ, Huang SX, Luthra P, Garner H, Itan Y, Volpi S, Lafaille FG, Trouillet C, Schmolke M, Albrecht RA, Israelsson E, Lim HK, Casadio M, Hermesh T, Lorenzo L, Leung LW, Pedergnana V, Boisson B, Okada S, Picard C, Ringuier B, Troussier F, Chaussabel D, Abel L, Pellier I, Notarangelo LD, Garcia-Sastre A, Basler CF, Geissmann F, Zhang SY, Snoeck HW, Casanova JL (2015) Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348(6233):448–453. https://doi.org/10.1126/science.aaa1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balan S, Arnold-Schrauf C, Abbas A, Couespel N, Savoret J, Imperatore F, Villani AC, Vu Manh TP, Bhardwaj N, Dalod M (2018) Large-scale human dendritic cell differentiation revealing notch-dependent lineage bifurcation and heterogeneity. Cell Rep 24(7):1902–1915. e1906. https://doi.org/10.1016/j.celrep.2018.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Silvin A, Yu CI, Lahaye X, Imperatore F, Brault JB, Cardinaud S, Becker C, Kwan WH, Conrad C, Maurin M, Goudot C, Marques-Ladeira S, Wang Y, Pascual V, Anguiano E, Albrecht RA, Iannacone M, Garcia-Sastre A, Goud B, Dalod M, Moris A, Merad M, Palucka AK, Manel N (2017) Constitutive resistance to viral infection in human CD141(+) dendritic cells. Sci Immunol 2(13). https://doi.org/10.1126/sciimmunol.aai8071

  26. Kirkling ME, Cytlak U, Lau CM, Lewis KL, Resteu A, Khodadadi-Jamayran A, Siebel CW, Salmon H, Merad M, Tsirigos A, Collin M, Bigley V, Reizis B (2018) Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell Rep 23(12):3658–3672 e3656. https://doi.org/10.1016/j.celrep.2018.05.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Eck van der Sluijs J, van Ens D, Thordardottir S, Vodegel D, Hermens I, van der Waart AB, Falkenburg JHF, Kester MGD, de Rink I, Heemskerk MHM, Borst J, Schaap NPM, Jansen JH, **ao Y, Dolstra H, Hobo W (2021) Clinically applicable CD34(+)-derived blood dendritic cell subsets exhibit key subset-specific features and potently boost anti-tumor T and NK cell responses. Cancer Immunol Immunother 70:3167. https://doi.org/10.1007/s00262-021-02899-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in the frame of the I2HD collaborative project between CIML, AVIESAN, and SANOFI. It received additional funding from Inserm, CNRS, Agence Nationale de Recherches sur le SIDA et les hépatites virales (ANRS to M.D.), Institut National du Cancer (INCa grant #2011-155), FRM (Equipe labellisée to M.D.), and the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013 Grant Agreement no. 281225, to M.D.). S.B. was supported through the Agence Nationale de la Recherche (EMICIF, ANR-08-MIEN-008-02 to M.D.) and the I2HD project. X.L. was supported through SIDACTION and ANRS post-doctoral fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Dalod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luo, X., Balan, S., Arnold-Schrauf, C., Dalod, M. (2023). In Vitro Generation of Human Cross-Presenting Type 1 Conventional Dendritic Cells (cDC1s) and Plasmacytoid Dendritic Cells (pDCs). In: Sisirak, V. (eds) Dendritic Cells. Methods in Molecular Biology, vol 2618. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2938-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2938-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2937-6

  • Online ISBN: 978-1-0716-2938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation