Origin, Phenotype, and Function of Mouse Dendritic Cell Subsets

  • Protocol
  • First Online:
Dendritic Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2618))

Abstract

Dendritic cells are cells of hematopoietic origin that are specialized in antigen presentation and instruction of innate and adaptive immune responses. They are a heterogenous group of cells populating lymphoid organs and most tissues. Dendritic cells are commonly separated in three main subsets that differ in their developmental paths, phenotype, and functions. Most studies on dendritic cells were done primarily in mice; therefore, in this chapter, we propose to summarize the current knowledge and recent progress on mouse dendritic cell subsets’ development, phenotype, and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137(5):1142–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson DA, Dutertre CA, Ginhoux F, Murphy KM (2021) Genetic models of human and mouse dendritic cell development and function. Nat Rev Immunol 21(2):101–115

    Article  CAS  PubMed  Google Scholar 

  3. Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563. https://doi.org/10.1146/annurev-immunol-020711-74950

    Article  CAS  PubMed  Google Scholar 

  4. Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis e Sousa C. (2021) Dendritic cells revisited. Annu Rev Immunol 39(1):131–166

    Article  CAS  PubMed  Google Scholar 

  5. Worbs T, Hammerschmidt SI, Förster R (2017) Dendritic cell migration in health and disease. Nat Rev Immunol 17(1):30–48

    Article  CAS  PubMed  Google Scholar 

  6. Kurts C, Cannarile M, Klebba I, Brocker T (2001) Dendritic cells are sufficient to cross-present self-antigens to CD8 T cells in vivo. J Immunol Baltim, MD 1950 166(3):1439–1442

    CAS  Google Scholar 

  7. Probst HC, Lagnel J, Kollias G, van den Broek M (2003) Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18(5):713–720

    Article  CAS  PubMed  Google Scholar 

  8. Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V (2011) Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29:163–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reizis B (2019) Plasmacytoid dendritic cells: development, regulation, and function. Immunity 50(1):37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan Y et al (2006) Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25(1):153–162

    Article  CAS  PubMed  Google Scholar 

  11. Ruhland MK, Roberts EW, Cai E, Mujal AM, Marchuk K, Beppler C et al (2020) Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell 37(6):786–799.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hickman HD, Takeda K, Skon CN, Murray FR, Hensley SE, Loomis J et al (2008) Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat Immunol 9(2):155–165

    Article  CAS  PubMed  Google Scholar 

  13. Gerner MY, Torabi-Parizi P, Germain RN (2015) Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity 42(1):172–185

    Article  CAS  PubMed  Google Scholar 

  14. Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao K et al (2009) In vivo analysis of dendritic cell development and homeostasis. Science 324(5925):392–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E et al (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95(11):3489–3497

    Article  CAS  PubMed  Google Scholar 

  16. Waskow C, Liu K, Darrasse-Jèze G, Guermonprez P, Ginhoux F, Merad M et al (2008) The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9(6):676–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K et al (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184(5):1953–1962

    Article  CAS  PubMed  Google Scholar 

  18. Mach N, Gillessen S, Wilson SB, Sheehan C, Mihm M, Dranoff G (2000) Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res 60(12):3239–3246

    CAS  PubMed  Google Scholar 

  19. Naik SH, Proietto AI, Wilson NS, Dakic A, Schnorrer P, Fuchsberger M et al (2005) Cutting edge: generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J Immunol Baltim MD 1950 174(11):6592–6597

    CAS  Google Scholar 

  20. Lee J, Zhou YJ, Ma W, Zhang W, Aljoufi A, Luh T et al (2017) Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors. Nat Immunol 18(8):877–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kurotaki D, Kawase W, Sasaki H, Nakabayashi J, Nishiyama A, Morse HC et al (2019) Epigenetic control of early dendritic cell lineage specification by the transcription factor IRF8 in mice. Blood 133(17):1803–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Naik SH, Sathe P, Park HY, Metcalf D, Proietto AI, Dakic A et al (2007) Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 8(11):1217–1226

    Article  CAS  PubMed  Google Scholar 

  23. Onai N, Obata-Onai A, Schmid MA, Ohteki T, Jarrossay D, Manz MG (2007) Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8(11):1207–1216

    Article  CAS  PubMed  Google Scholar 

  24. Grajales-Reyes GE, Iwata A, Albring J, Wu X, Tussiwand R, Kc W et al (2015) Batf3 maintains autoactivation of Irf8 for commitment of a CD8α(+) conventional DC clonogenic progenitor. Nat Immunol 16(7):708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HRB, Schreuder J, Lum J et al (2015) Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat Immunol 16(7):718–728

    Article  CAS  PubMed  Google Scholar 

  26. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M et al (2008) Batf3 deficiency reveals a critical role for CD8α + dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC, Kuhl C et al (2003) Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4(4):380–386

    Article  CAS  PubMed  Google Scholar 

  28. Kashiwada M, Pham NLL, Pewe LL, Harty JT, Rothman PB (2011) NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development. Blood 117(23):6193–6197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seillet C, Jackson JT, Markey KA, Brady HJM, Hill GR, Macdonald KPA et al (2013) CD8α+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3. Blood 121(9):1574–1583

    Article  CAS  PubMed  Google Scholar 

  30. Tussiwand R, Everts B, Grajales-Reyes GE, Kretzer NM, Iwata A, Bagaitkar J et al (2015) Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42(5):916–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bagadia P, Huang X, Liu TT, Durai V, Grajales-Reyes GE, Nitschké M et al (2019) An Nfil3–Zeb2–Id2 pathway imposes Irf8 enhancer switching during cDC1 development. Nat Immunol 20(9):1174–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Durai V, Bagadia P, Granja JM, Satpathy AT, Kulkarni DH, Davidson JT et al (2019) Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nat Immunol 20(9):1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lança T, Ungerbäck J, Da Silva C, Joeris T, Ahmadi F, Vandamme J et al (2022) IRF8 deficiency induces the transcriptional, functional, and epigenetic reprogramming of cDC1 into the cDC2 lineage. Immunity:S1074-7613(22)00279-5

    Google Scholar 

  34. Satpathy AT, Briseño CG, Lee JS, Ng D, Manieri NA, Kc W et al (2013) Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol 14(9):937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murphy TL, Grajales-Reyes GE, Wu X, Tussiwand R, Briseño CG, Iwata A et al (2016) Transcriptional control of dendritic cell development. Annu Rev Immunol 34:93–119

    Article  CAS  PubMed  Google Scholar 

  36. Liu TT, Kim S, Desai P, Kim DH, Huang X, Ferris ST et al (2022) Ablation of cDC2 development by triple mutations within the Zeb2 enhancer. Nature 607(7917):142–148

    Article  CAS  PubMed  Google Scholar 

  37. Caton ML, Smith-Raska MR, Reizis B (2007) Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med 204(7):1653–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lewis KL, Caton ML, Bogunovic M, Greter M, Grajkowska LT, Ng D et al (2011) Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35(5):780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brown CC, Gudjonson H, Pritykin Y, Deep D, Lavallée VP, Mendoza A et al (2019) Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 179(4):846–863.e24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cisse B, Caton ML, Lehner M, Maeda T, Scheu S, Locksley R et al (2008) Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135(1):37–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ghosh HS, Cisse B, Bunin A, Lewis KL, Reizis B (2010) Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 33(6):905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghosh HS, Ceribelli M, Matos I, Lazarovici A, Bussemaker HJ, Lasorella A et al (2014) ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2. J Exp Med 211(8):1623–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ippolito GC, Dekker JD, Wang YH, Lee BK, Shaffer AL, Lin J et al (2014) Dendritic cell fate is determined by BCL11A. Proc Natl Acad Sci U S A 111(11):E998–E1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scott CL, Soen B, Martens L, Skrypek N, Saelens W, Taminau J et al (2016) The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. J Exp Med 213(6):897–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feng J, Pucella JN, Jang G, Alcántara-Hernández M, Upadhaya S, Adams NM et al (2022) Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells. Immunity 55(3):405–422.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dress RJ, Dutertre CA, Giladi A, Schlitzer A, Low I, Shadan NB et al (2019) Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nat Immunol 20(7):852–864

    Article  CAS  PubMed  Google Scholar 

  47. Rodrigues PF, Alberti-Servera L, Eremin A, Grajales-Reyes GE, Ivanek R, Tussiwand R (2018) Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat Immunol 19(7):711–722

    Article  CAS  PubMed  Google Scholar 

  48. Robbins SH, Walzer T, Dembélé D, Thibault C, Defays A, Bessou G et al (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9(1):R17

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lutz K, Musumeci A, Sie C, Dursun E, Winheim E, Bagnoli J et al (2022) Ly6D+Siglec-H+ precursors contribute to conventional dendritic cells via a Zbtb46+Ly6D+ intermediary stage. Nat Commun 13(1):3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44(3):439–449

    Article  CAS  PubMed  Google Scholar 

  51. Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM et al (2006) Langerhans cells arise from monocytes in vivo. Nat Immunol 7(3):265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B et al (2012) Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209(6):1167–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M et al (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13(8):753–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, Hashimoto D et al (2009) The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med 206(13):3115–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU et al (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG (2003) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19(1):59–70

    Article  CAS  PubMed  Google Scholar 

  57. Schraml BU, van Blijswijk J, Zelenay S, Whitney PG, Filby A, Acton SE et al (2013) Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154(4):843–858

    Article  CAS  PubMed  Google Scholar 

  58. Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I, Chen X et al (2019) Fate map** via Ms4a3-expression history traces monocyte-derived cells. Cell 178(6):1509–1525.e19

    Article  CAS  PubMed  Google Scholar 

  59. Segura E (2016) Review of mouse and human dendritic cell subsets. In: Segura E, Onai N (eds) Dendritic cell protocols [Internet], Methods in molecular biology, vol 1423. Springer New York, New York, pp 3–15. [cité 18 juill 2022]. Disponible sur: http://springer.longhoe.net/10.1007/978-1-4939-3606-9_1

  60. Bosteels C, Neyt K, Vanheerswynghels M, van Helden MJ, Sichien D, Debeuf N et al (2020) Inflammatory type 2 cDCs acquire features of cDC1s and macrophages to orchestrate immunity to respiratory virus infection. Immunity 52(6):1039–1056.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cabeza-Cabrerizo M, van Blijswijk J, Wienert S, Heim D, Jenkins RP, Chakravarty P et al (2019) Tissue clonality of dendritic cell subsets and emergency DCpoiesis revealed by multicolor fate map** of DC progenitors. Sci Immunol 4(33):eaaw1941

    Article  PubMed  PubMed Central  Google Scholar 

  62. Guilliams M, Dutertre CA, Scott CL, McGovern N, Sichien D, Chakarov S et al (2016) Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45(3):669–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Salei N, Rambichler S, Salvermoser J, Papaioannou NE, Schuchert R, Pakalniškytė D et al (2020) The kidney contains ontogenetically distinct dendritic cell and macrophage subtypes throughout development that differ in their inflammatory properties. J Am Soc Nephrol 31(2):257–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Murphy TL, Murphy KM (2022) Dendritic cells in cancer immunology. Cell Mol Immunol 19(1):3–13

    Article  CAS  PubMed  Google Scholar 

  65. Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S et al (2016) Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44(4):924–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE, Wolf DM et al (2016) Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30(2):324–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schenkel JM, Herbst RH, Canner D, Li A, Hillman M, Shanahan SL et al (2021) Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ T cells in tumor-draining lymph nodes. Immunity 54(10):2338–2353.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spranger S, Dai D, Horton B, Gajewski TF (2017) Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31(5):711–723.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, Bern MD et al (2020) cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584(7822):624–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Neuenhahn M, Kerksiek KM, Nauerth M, Suhre MH, Schiemann M, Gebhardt FE et al (2006) CD8α+ dendritic cells are required for efficient entry of Listeria monocytogenes into the spleen. Immunity 25(4):619–630

    Article  CAS  PubMed  Google Scholar 

  71. Edelson BT, Bradstreet TR, Hildner K, Carrero JA, Frederick KE, Kc W et al (2011) CD8α+ dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 35(2):236–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ashok D, Schuster S, Ronet C, Rosa M, Mack V, Lavanchy C et al (2014) Cross-presenting dendritic cells are required for control of Leishmania major infection: immunity to infection. Eur J Immunol 44(5):1422–1432

    Article  CAS  PubMed  Google Scholar 

  73. Torti N, Walton SM, Murphy KM, Oxenius A (2011) Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur J Immunol 41(9):2612–2618

    Article  CAS  PubMed  Google Scholar 

  74. Nopora K, Bernhard CA, Ried C, Castello AA, Murphy KM, Marconi P et al (2012) MHC class I cross-presentation by dendritic cells counteracts viral immune evasion. Front Immunol [Internet] [cité 18 juill 2022];3. Disponible sur: http://journal.frontiersin.org/article/10.3389/fimmu.2012.00348/abstract

  75. Luber CA, Cox J, Lauterbach H, Fancke B, Selbach M, Tschopp J et al (2010) Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32(2):279–289

    Article  CAS  PubMed  Google Scholar 

  76. Schulz O, Diebold SS, Chen M, Näslund TI, Nolte MA, Alexopoulou L et al (2005) Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433(7028):887–892

    Article  CAS  PubMed  Google Scholar 

  77. Davey GM, Wojtasiak M, Proietto AI, Carbone FR, Heath WR, Bedoui S (2010) Cutting edge: priming of CD8 T Cell immunity to herpes simplex virus type 1 requires cognate TLR3 expression in vivo. J Immunol 184(5):2243–2246

    Article  CAS  PubMed  Google Scholar 

  78. Dähling S, Mansilla AM, Knöpper K, Grafen A, Utzschneider DT, Ugur M et al (2022) Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Immunity 55(4):656–670.e8

    Article  PubMed  Google Scholar 

  79. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS et al (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308(5728):1626–1629

    Article  CAS  PubMed  Google Scholar 

  80. Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A, Goldszmid RS et al (2011) CD8α+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35(2):249–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Izumi G, Nakano H, Nakano K, Whitehead GS, Grimm SA, Fessler MB et al (2021) CD11b+ lung dendritic cells at different stages of maturation induce Th17 or Th2 differentiation. Nat Commun 12(1):5029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Briseño CG, Satpathy AT, Davidson JT, Ferris ST, Durai V, Bagadia P et al (2018) Notch2-dependent DC2s mediate splenic germinal center responses. Proc Natl Acad Sci 115(42):10726–10731

    Article  PubMed  PubMed Central  Google Scholar 

  83. Saito Y, Komori S, Kotani T, Murata Y, Matozaki T (2022) The role of type-2 conventional dendritic cells in the regulation of tumor immunity. Cancers 14(8):1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang X, Artola-Boran M, Fallegger A, Arnold IC, Weber A, Reuter S et al (2020) IRF4 expression is required for the immunoregulatory activity of conventional type 2 dendritic cells in settings of chronic bacterial infection and cancer. J Immunol 205(7):1933–1943

    Article  CAS  PubMed  Google Scholar 

  85. Binnewies M, Mujal AM, Pollack JL, Combes AJ, Hardison EA, Barry KC et al (2019) Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177(3):556–571.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Duong E, Fessenden TB, Lutz E, Dinter T, Yim L, Blatt S et al (2022) Type I interferon activates MHC class I-dressed CD11b+ conventional dendritic cells to promote protective anti-tumor CD8+ T cell immunity. Immunity 55(2):308–323.e9

    Article  CAS  PubMed  Google Scholar 

  87. Gargaro M, Scalisi G, Manni G, Briseño CG, Bagadia P, Durai V et al (2022) Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity 55(6):1032–1050.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Breed ER, Vobořil M, Ashby KM, Martinez RJ, Qian L, Wang H et al (2022) Type 2 cytokines in the thymus activate Sirpα+ dendritic cells to promote clonal deletion. Nat Immunol 23(7):1042–1051

    Article  CAS  PubMed  Google Scholar 

  89. Cervantes-Barragan L, Lewis KL, Firner S, Thiel V, Hugues S, Reith W et al (2012) Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc Natl Acad Sci U S A 109(8):3012–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Swiecki M, Gilfillan S, Vermi W, Wang Y, Colonna M (2010) Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity 33(6):955–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Swiecki M, Wang Y, Gilfillan S, Colonna M (2013) Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections. PLoS Pathog 9(10):e1003728

    Article  PubMed  PubMed Central  Google Scholar 

  92. Brewitz A, Eickhoff S, Dähling S, Quast T, Bedoui S, Kroczek RA et al (2017) CD8+ T cells orchestrate pDC-XCR1+ dendritic cell spatial and functional cooperativity to optimize priming. Immunity 46(2):205–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sisirak V, Ganguly D, Lewis KL, Couillault C, Tanaka L, Bolland S et al (2014) Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J Exp Med 211(10):1969–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Soni C, Perez OA, Voss WN, Pucella JN, Serpas L, Mehl J et al (2020) Plasmacytoid dendritic cells and type I interferon promote extrafollicular B cell responses to extracellular self-DNA. Immunity [Internet]. [cité 16 juin 2020]. Disponible sur: http://www.cell.com/immunity/abstract/S1074-7613(20)30173-4

  95. Rowland SL, Riggs JM, Gilfillan S, Bugatti M, Vermi W, Kolbeck R et al (2014) Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J Exp Med 211(10):1977–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kioon MDA, Tripodo C, Fernandez D, Kirou KA, Spiera RF, Crow MK et al (2018) Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci Transl Med 10(423):eaam8458

    Article  Google Scholar 

  97. Villadangos JA, Young L (2008) Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29(3):352–361

    Article  CAS  PubMed  Google Scholar 

  98. Abbas A, Manh TPV, Valente M, Collinet N, Attaf N, Dong C et al (2020) The activation trajectory of plasmacytoid dendritic cells in vivo during a viral infection. Nat Immunol 21(9):983–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Janela B, Patel AA, Lau MC, Goh CC, Msallam R, Kong WT et al (2019) A subset of type I conventional dendritic cells controls cutaneous bacterial infections through VEGFα-mediated recruitment of neutrophils. Immunity 50(4):1069–1083.e8

    Article  CAS  PubMed  Google Scholar 

  100. Xu J, Zanvit P, Hu L, Tseng PY, Liu N, Wang F et al (2020) The cytokine TGF-β induces interleukin-31 expression from dermal dendritic cells to activate sensory neurons and stimulate wound itching. Immunity 53(2):371–383.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Figures were created with Biorender.com. The work in our laboratory is supported by research grant from the IdEx junior chair program from the University of Bordeaux, the Agence Nationale de la Recherche (ANR JCJC DOMINOS), the Institut National du Cancer (INCa-PLBIO22-124) and the SIRIC Brio.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dorothée Duluc or Vanja Sisirak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Duluc, D., Sisirak, V. (2023). Origin, Phenotype, and Function of Mouse Dendritic Cell Subsets. In: Sisirak, V. (eds) Dendritic Cells. Methods in Molecular Biology, vol 2618. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2938-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2938-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2937-6

  • Online ISBN: 978-1-0716-2938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation