ATAC-seq Data Processing

  • Protocol
  • First Online:
Chromatin Accessibility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2611))

Abstract

ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) has gained wide popularity as a fast, straightforward, and efficient way of generating genome-wide maps of open chromatin and guiding identification of active regulatory elements and inference of DNA protein binding locations. Given the ubiquity of this method, uniform and standardized methods for processing and assessing the quality of ATAC-seq datasets are needed. Here, we describe the data processing pipeline used by the ENCODE (Encyclopedia of DNA Elements) consortium to process ATAC-seq data into peak call sets and signal tracks and to assess the quality of these datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buenrostro JD, Giresi PG, Zaba LC et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218. https://doi.org/10.1038/nmeth.2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galas DJ, Schmitz A (1978) DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res 5:3157–3170. https://doi.org/10.1093/nar/5.9.3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hesselberth JR, Chen X, Zhang Z et al (2009) Global map** of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods 6:283–289. https://doi.org/10.1038/nmeth.1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Z, Schulz MH, Look T et al (2019) Identification of transcription factor binding sites using ATAC-seq. Genome Biol 20:45. https://doi.org/10.1186/s13059-019-1642-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. ENCODE Project Consortium, Moore JE, Purcaro MJ et al (2020) Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583:699–710. https://doi.org/10.1038/s41586-020-2493-4

    Article  CAS  Google Scholar 

  6. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  7. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. (2020) Picard Toolkit. Broad Institute

    Google Scholar 

  11. Feng J, Liu T, Qin B et al (2012) Identifying ChIP-seq enrichment using MACS. Nat Protoc 7:1728–1740. https://doi.org/10.1038/nprot.2012.101

    Article  CAS  PubMed  Google Scholar 

  12. Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26:1351–1359. https://doi.org/10.1038/nbt.1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramírez F, Ryan DP, Grüning B et al (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160–W165. https://doi.org/10.1093/nar/gkw257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amemiya HM, Kundaje A, Boyle AP (2019) The ENCODE blacklist: identification of problematic regions of the genome. Sci Rep 9:9354. https://doi.org/10.1038/s41598-019-45839-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Avsec Ž, Weilert M, Shrikumar A et al (2021) Base-resolution models of transcription-factor binding reveal soft motif syntax. Nat Genet 53:354–366. https://doi.org/10.1038/s41588-021-00782-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meyer CA, Liu XS (2014) Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet 15:709–721. https://doi.org/10.1038/nrg3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Henikoff JG, Belsky JA, Krassovsky K et al (2011) Epigenome characterization at single base-pair resolution. PNAS 108:18318–18323. https://doi.org/10.1073/pnas.1110731108

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, D.S. (2023). ATAC-seq Data Processing. In: Marinov, G.K., Greenleaf, W.J. (eds) Chromatin Accessibility. Methods in Molecular Biology, vol 2611. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2899-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2899-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2898-0

  • Online ISBN: 978-1-0716-2899-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation