Quantitative Analysis of Nuclear Poly(ADP-Ribose) Dynamics in Response to Laser-Induced DNA Damage

  • Protocol
  • First Online:
Poly(ADP-Ribose) Polymerase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2609))

Abstract

Poly(ADP-ribose) (PAR), catalyzed by members of the poly(ADP-ribose) polymerase family of enzymes, is a posttranslational modification with a critical role in most mechanisms of DNA repair. Upon activation of poly(ADP-ribose) polymerase isoforms 1 and 2 (PARP-1 and PARP-2), the proteins of the base excision repair (BER) and single-strand break repair (SSBR) pathways form DNA lesion-dependent, transient complexes to facilitate repair. PAR is central to the temporal dynamics of BER/SSBR complex assembly and disassembly. To enhance cellular PAR analysis, we developed LivePAR, a fluorescently tagged PAR-binding fusion protein and genetically encoded imaging probe for live cell, quantitative analysis of PAR in mammalian cells. LivePAR has the advantage that it enables real-time imaging of PAR formation in cells and significantly overcomes limitations of immunocytochemistry for PAR analysis. This chapter describes the protocols needed to develop cells expressing LivePAR or EGFP-tagged BER proteins and to evaluate laser-induced formation of PAR and comparison to the assembly of the BER proteins XRCC1 and DNA polymerase-β.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almeida KH, Sobol RW (2007) A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 6:695–711

    Article  CAS  Google Scholar 

  2. Beck C, Robert I, Reina-San-Martin B et al (2014) Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res 329:18–25

    Article  CAS  Google Scholar 

  3. Boehler C, Gauthier LR, Mortusewicz O et al (2011) Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc Natl Acad Sci U S A 108:2783–2788

    Article  CAS  Google Scholar 

  4. Breslin C, Hornyak P, Ridley A et al (2015) The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function. Nucleic Acids Res 43:6934–6944

    Article  CAS  Google Scholar 

  5. Caldecott KW (2020) Mammalian DNA base excision repair: dancing in the moonlight. DNA Repair (Amst) 93:102921

    Article  CAS  Google Scholar 

  6. Caldecott KW (2007) Mammalian single-strand break repair: mechanisms and links with chromatin. DNA Repair (Amst) 6:443–453

    Article  CAS  Google Scholar 

  7. Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    Article  CAS  Google Scholar 

  8. Fouquerel E, Goellner EM, Yu Z et al (2014) ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep 8:1819–1831

    Article  CAS  Google Scholar 

  9. Fouquerel E, Sobol RW (2014) ARTD1 (PARP1) activation and NAD(+) in DNA repair and cell death. DNA Repair (Amst) 23:27–32

    Article  CAS  Google Scholar 

  10. Grundy GJ, Polo LM, Zeng Z et al (2016) PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B(Glu2). Nat Commun 7:12404

    Article  CAS  Google Scholar 

  11. Hakme A, Wong HK, Dantzer F et al (2008) The expanding field of poly(ADP-ribosyl)ation reactions. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 9:1094–1100

    Article  CAS  Google Scholar 

  12. Holton NW, Andrews JF, Gassman NR (2017) Application of laser micro-irradiation for examination of single and double strand break repair in mammalian cells. J Vis Exp 127:56265

    Google Scholar 

  13. Hottiger MO, Hassa PO, Luscher B et al (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35:208–219

    Article  CAS  Google Scholar 

  14. Huang D, Kraus WL (2022) The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol Cell 82:2315–2334

    Article  CAS  Google Scholar 

  15. Koczor CA, Saville KM, Andrews JF et al (2021) Temporal dynamics of base excision/single-strand break repair protein complex assembly/disassembly are modulated by the PARP/NAD(+)/SIRT6 axis. Cell Rep 37:109917

    Article  CAS  Google Scholar 

  16. Kraus WL (2008) Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 20:294–302

    Article  CAS  Google Scholar 

  17. Li J, Saville KM, Ibrahim M et al (2021) NAD(+) bioavailability mediates PARG inhibition-induced replication arrest, intra S-phase checkpoint and apoptosis in glioma stem cells. NAR Cancer 3:zcab044

    Article  Google Scholar 

  18. Rulten SL, Fisher AE, Robert I et al (2011) PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell 41:33–45

    Article  CAS  Google Scholar 

  19. Saville KM, Clark J, Wilk A et al (2020) NAD(+)-mediated regulation of mammalian base excision repair. DNA Repair (Amst) 93:102930

    Article  CAS  Google Scholar 

  20. Svilar D, Goellner EM, Almeida KH et al (2011) Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal 14:2491–2507

    Article  CAS  Google Scholar 

  21. Teloni F, Altmeyer M (2016) Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res 44:993–1006

    Article  CAS  Google Scholar 

  22. Timinszky G, Till S, Hassa PO et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16:923–929

    Article  CAS  Google Scholar 

  23. Wacker DA, Frizzell KM, Zhang T et al (2007) Regulation of chromatin structure and chromatin-dependent transcription by poly(ADP-ribose) polymerase-1: possible targets for drug-based therapies. Subcell Biochem 41:45–69

    Article  Google Scholar 

  24. Wang Z, Michaud GA, Cheng Z et al (2012) Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev 26:235–240

    Article  Google Scholar 

Download references

Acknowledgments

RWS is an Abraham A. Mitchell Distinguished Investigator. Research in the Sobol lab on DNA repair, the analysis of DNA damage, and the impact of genotoxic exposure is funded by grants from the National Institutes of Health (NIH) [CA148629, ES014811, ES029518, ES028949, and CA238061], from the National Science Foundation (NSF) [NSF-1841811], and a grant from the DOD [GRANT11998991, DURIP-Navy]. Support is also provided from the Abraham A. Mitchell Distinguished Investigator Fund and from the Mitchell Cancer Institute Molecular & Metabolic Oncology Program Development fund (to RWS). The support for the development of LivePAR was also provided by the Mitchell Cancer Institute Junior Faculty Award (to CAK). Many thanks to Alison Beiser for kee** all our lab reagents in order.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Sobol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Koczor, C.A., Saville, K.M., Al-Rahahleh, R.Q., Andrews, J.F., Li, J., Sobol, R.W. (2023). Quantitative Analysis of Nuclear Poly(ADP-Ribose) Dynamics in Response to Laser-Induced DNA Damage. In: Tulin, A.V. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 2609. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2891-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2891-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2890-4

  • Online ISBN: 978-1-0716-2891-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation