Investigating Tissue Regeneration Using the DUAL Control Genetic Ablation System

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2599))

  • 1469 Accesses

Abstract

Genetic ablation is a highly efficient method to study regeneration in vivo by stimulating tissue-specific cell death that subsequently induces regrowth and repair in a develo** organism. This approach has been particularly successful in Drosophila, for which various temperature-based genetic ablation tools have been developed to explore the complexities of regeneration in larval imaginal discs. Here, we describe the use of a recently established ablation system called DUAL Control, which can be used to both characterize the damage response and genetically manipulate blastema cells to identify novel regulators of regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 109.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morgan TH (1901) Regeneration and liability to injury. Science 14(346):235–248. https://doi.org/10.1126/science.14.346.235

    Article  CAS  PubMed  Google Scholar 

  2. Li Q, Yang H, Zhong TP (2015) Regeneration across metazoan phylogeny: lessons from model organisms. J Genet Genomics 42(2):57–70. https://doi.org/10.1016/j.jgg.2014.12.002

    Article  PubMed  Google Scholar 

  3. Fox DT, Cohen E, Smith-Bolton R (2020) Model systems for regeneration: Drosophila. Development 147(7). https://doi.org/10.1242/dev.173781

  4. Marques IJ, Lupi E, Mercader N (2019) Model systems for regeneration: zebrafish. Development 146(18). https://doi.org/10.1242/dev.167692

  5. Worley MI, Setiawan L, Hariharan IK (2012) Regeneration and transdetermination in Drosophila imaginal discs. Annu Rev Genet 46:289–310. https://doi.org/10.1146/annurev-genet-110711-155637

    Article  CAS  PubMed  Google Scholar 

  6. Smith-Bolton R (2016) Drosophila imaginal discs as a model of epithelial wound repair and regeneration. Adv Wound Care (New Rochelle) 5(6):251–261. https://doi.org/10.1089/wound.2014.0547

    Article  PubMed  Google Scholar 

  7. Hariharan IK, Serras F (2017) Imaginal disc regeneration takes flight. Curr Opin Cell Biol 48:10–16. https://doi.org/10.1016/j.ceb.2017.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bergantinos C, Vilana X, Corominas M, Serras F (2010) Imaginal discs: renaissance of a model for regenerative biology. BioEssays 32(3):207–217. https://doi.org/10.1002/bies.200900105

    Article  PubMed  Google Scholar 

  9. Beira JV, Paro R (2016) The legacy of Drosophila imaginal discs. Chromosoma 125(4):573–592. https://doi.org/10.1007/s00412-016-0595-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bryant PJ (1971) Regeneration and duplication following operations in situ on the imaginal discs of Drosophila melanogaster. Dev Biol 26(4):637–651. https://doi.org/10.1016/0012-1606(71)90146-1

    Article  CAS  PubMed  Google Scholar 

  11. Hadorn E, Hurlimann R, Mindek G, Schubiger G, Staub M (1968) Developmental capacity of embryonal blastema in Drosophila following cultivation in an adult host. Rev Suisse Zool 75(3):557–569

    CAS  PubMed  Google Scholar 

  12. Haynie JL, Bryant PJ (1977) The effects of X-rays on the proliferation dynamics of cells in the imaginal wing disc of Drosophila melanogaster. Wilehm Roux Arch Dev Biol 183(2):85–100. https://doi.org/10.1007/BF00848779

    Article  PubMed  Google Scholar 

  13. Schubiger G (1971) Regeneration, duplication and transdetermination in fragments of the leg disc of Drosophila melanogaster. Dev Biol 26(2):277–295. https://doi.org/10.1016/0012-1606(71)90127-8

    Article  CAS  PubMed  Google Scholar 

  14. Sweeney ST, Hidalgo A, de Belle JS, Keshishian H (2012) Genetic systems for functional cell ablation in Drosophila. Cold Spring Harb Protoc 2012(9):950–956. https://doi.org/10.1101/pdb.top068361

    Article  PubMed  Google Scholar 

  15. Smith-Bolton RK, Worley MI, Kanda H, Hariharan IK (2009) Regenerative growth in Drosophila imaginal discs is regulated by wingless and Myc. Dev Cell 16(6):797–809. https://doi.org/10.1016/j.devcel.2009.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bergantinos C, Corominas M, Serras F (2010) Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 137(7):1169–1179. https://doi.org/10.1242/dev.045559

    Article  CAS  PubMed  Google Scholar 

  17. Harris RE, Stinchfield MJ, Nystrom SL, McKay DJ, Hariharan IK (2020) Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila. elife 9. https://doi.org/10.7554/eLife.58305

  18. Herrera SC, Martin R, Morata G (2013) Tissue homeostasis in the wing disc of Drosophila melanogaster: immediate response to massive damage during development. PLoS Genet 9(4):e1003446. https://doi.org/10.1371/journal.pgen.1003446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Herrera SC, Morata G (2014) Transgressions of compartment boundaries and cell reprogramming during regeneration in Drosophila. elife 3:e01831. https://doi.org/10.7554/eLife.01831

    Article  PubMed  PubMed Central  Google Scholar 

  20. Repiso A, Bergantinos C, Serras F (2013) Cell fate respecification and cell division orientation drive intercalary regeneration in Drosophila wing discs. Development 140(17):3541–3551. https://doi.org/10.1242/dev.095760

    Article  CAS  PubMed  Google Scholar 

  21. Vizcaya-Molina E, Klein CC, Serras F, Mishra RK, Guigo R, Corominas M (2018) Damage-responsive elements in Drosophila regeneration. Genome Res 28(12):1852–1866. https://doi.org/10.1101/gr.233098.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santabarbara-Ruiz P, Esteban-Collado J, Perez L, Viola G, Abril JF, Milan M, Corominas M, Serras F (2019) Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila. PLoS Genet 15(1):e1007926. https://doi.org/10.1371/journal.pgen.1007926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186(2):735–755. https://doi.org/10.1534/genetics.110.119917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lai SL, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9(5):703–709. https://doi.org/10.1038/nn1681

    Article  CAS  PubMed  Google Scholar 

  25. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    Article  CAS  PubMed  Google Scholar 

  26. Blair SS (2007) Dissection of imaginal discs in Drosophila. CSH Protoc 2007:pdb prot4794. https://doi.org/10.1101/pdb.prot4794

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the NICHD R21 HD102765-01 to R.E.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Harris, R.E. (2023). Investigating Tissue Regeneration Using the DUAL Control Genetic Ablation System. In: Simoes-Costa, M. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 2599. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2847-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2847-8_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2846-1

  • Online ISBN: 978-1-0716-2847-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation