Decellularization of Articular Cartilage: A Hydrochloric Acid–Based Strategy

  • Protocol
  • First Online:
Cartilage Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2598))

  • 1499 Accesses

Abstract

Removing cellular material from a tissue, a process called decellularization, reduces the risk of adverse host reactions, allows for efficient decontamination, and extends the shelf-life of the matrix. It facilitates the use of cartilage tissue as human-derived allograft, thus providing the field of cartilage regeneration with a biomaterial unmatched in its similarity to native cartilage in terms of structure, composition, and mechanical properties.

The dense extracellular matrix of articular cartilage requires a particularly thorough process to achieve the removal of cells, cell debris, and reagents used in the process. In our studies (Nürnberger et al., EBioMedicine 64:103196, 2021; Schneider et al., Tissue Eng Part C Methods 22(12):1095–1107, 2016), we have successfully developed a protocol for achieving decellularization via physical, chemical, and enzymatic steps. Combining freeze-thaw cycles for devitalization, hydrochloric acid as decellularization agent and the enzymatic removal of glycosaminoglycans, results in an acellular scaffold that is fully biocompatible and promotes cellular attachment. The structure and sophisticated architecture of collagen type II is left intact.

This chapter provides a comprehensive guide to the steps and reagents needed to decellularize articular cartilage. In addition to the standard decell-deGAG protocol, a fast option is given which is suitable for thin specimen. Histological evaluation is presented to illustrate treatment success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang CH, Chen CC, Liao CH et al (2014) Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells. J Biomed Mater Res A 102(7):2248–2257. https://doi.org/10.1002/jbm.a.34897

    Article  CAS  PubMed  Google Scholar 

  2. Chen CC, Liao CH, Wang YH et al (2012) Cartilage fragments from osteoarthritic knee promote chondrogenesis of mesenchymal stem cells without exogenous growth factor induction. J Orthop Res 30(3):393–400. https://doi.org/10.1002/jor.21541

    Article  CAS  PubMed  Google Scholar 

  3. Chiu LH, Chen SC, Wu KC et al (2011) Differential effect of ECM molecules on re-expression of cartilaginous markers in near quiescent human chondrocytes. J Cell Physiol 226(8):1981–1988. https://doi.org/10.1002/jcp.22530

    Article  CAS  PubMed  Google Scholar 

  4. Getgood A, Brooks R, Fortier L et al (2009) Articular cartilage tissue engineering: today’s research, tomorrow’s practice? J Bone Joint Surg Br 91(5):565–576. https://doi.org/10.1302/0301-620X.91B5.21832

    Article  CAS  PubMed  Google Scholar 

  5. Jeuken RM, Roth AK, Peters R et al (2016) Polymers in cartilage defect repair of the knee: current status and future prospects. Polymers (Basel) 8(6). https://doi.org/10.3390/polym8060219

  6. Nürnberger S, Cyran N, Albrecht C et al (2011) The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. Biomaterials 32(4):1032–1040. https://doi.org/10.1016/j.biomaterials.2010.08.100

    Article  CAS  Google Scholar 

  7. Rai V, Dilisio MF, Dietz NE et al (2017) Recent strategies in cartilage repair: a systemic review of the scaffold development and tissue engineering. J Biomed Mater Res A 105(8):2343–2354. https://doi.org/10.1002/jbm.a.36087

    Article  CAS  PubMed  Google Scholar 

  8. Arzi B, DuRaine GD, Lee CA et al (2015) Cartilage immunoprivilege depends on donor source and lesion location. Acta Biomater 23:72–81. https://doi.org/10.1016/j.actbio.2015.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5(1):1–13. https://doi.org/10.1016/j.actbio.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  10. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243. https://doi.org/10.1016/j.biomaterials.2011.01.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683. https://doi.org/10.1016/j.biomaterials.2006.02.014

    Article  CAS  PubMed  Google Scholar 

  12. Funamoto S, Nam K, Kimura T et al (2010) The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31(13):3590–3595. https://doi.org/10.1016/j.biomaterials.2010.01.073

    Article  CAS  PubMed  Google Scholar 

  13. Oliveira AC, Garzon I, Ionescu AM et al (2013) Evaluation of small intestine grafts decellularization methods for corneal tissue engineering. PLoS One 8(6):e66538. https://doi.org/10.1371/journal.pone.0066538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pegg DE (1987) Mechanisms of freezing damage. Symp Soc Exp Biol 41:363–378

    CAS  PubMed  Google Scholar 

  15. Pegg DE (2020) The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology 93:3–11. https://doi.org/10.1016/j.cryobiol.2020.01.005

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki S, Funamoto S, Hashimoto Y et al (2009) In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Mol Vis 15:2022–2028

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kheir E, Stapleton T, Shaw D et al (2011) Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. J Biomed Mater Res A 99(2):283–294. https://doi.org/10.1002/jbm.a.33171

    Article  CAS  PubMed  Google Scholar 

  18. Beck EC, Barragan M, Libeer TB et al (2016) Chondroinduction from naturally derived cartilage matrix: a comparison between devitalized and decellularized cartilage encapsulated in hydrogel pastes. Tissue Eng Part A 22(7–8):665–679. https://doi.org/10.1089/ten.TEA.2015.0546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elder BD, Eleswarapu SV, Athanasiou KA (2009) Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials 30(22):3749–3756. https://doi.org/10.1016/j.biomaterials.2009.03.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghassemi T, Saghatoleslami N, Mahdavi-Shahri N et al (2019) A comparison study of different decellularization treatments on bovine articular cartilage. J Tissue Eng Regen Med 13(10):1861–1871. https://doi.org/10.1002/term.2936

    Article  CAS  PubMed  Google Scholar 

  21. Schwarz S, Koerber L, Elsaesser AF et al (2012) Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A 18(21–22):2195–2209. https://doi.org/10.1089/ten.TEA.2011.0705

    Article  CAS  PubMed  Google Scholar 

  22. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666(1–2):105–117. https://doi.org/10.1016/j.bbamem.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  23. Bleeg HS (1990) Non-specific cleavage of collagen by proteinases in the presence of sodium dodecyl sulfate. Scand J Dent Res 98(3):235–241. https://doi.org/10.1111/j.1600-0722.1990.tb00967.x

    Article  CAS  PubMed  Google Scholar 

  24. Cartmell JS, Dunn MG (2004) Development of cell-seeded patellar tendon allografts for anterior cruciate ligament reconstruction. Tissue Eng 10(7–8):1065–1075. https://doi.org/10.1089/ten.2004.10.1065

    Article  CAS  PubMed  Google Scholar 

  25. Rieder E, Kasimir MT, Silberhumer G et al (2004) Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 127(2):399–405. https://doi.org/10.1016/j.jtcvs.2003.06.017

    Article  PubMed  Google Scholar 

  26. Wilson GJ, Courtman DW, Klement P et al (1995) Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg 60(2 Suppl):S353–S358. https://doi.org/10.1016/0003-4975(95)98967-y

    Article  CAS  PubMed  Google Scholar 

  27. McFetridge PS, Daniel JW, Bodamyali T et al (2004) Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A 70(2):224–234. https://doi.org/10.1002/jbm.a.30060

    Article  CAS  PubMed  Google Scholar 

  28. Mendoza-Novelo B, Avila EE, Cauich-Rodriguez JV et al (2011) Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomater 7(3):1241–1248. https://doi.org/10.1016/j.actbio.2010.11.017

    Article  CAS  PubMed  Google Scholar 

  29. Nimeskern L, Utomo L, Lehtoviita I et al (2016) Tissue composition regulates distinct viscoelastic responses in auricular and articular cartilage. J Biomech 49(3):344–352. https://doi.org/10.1016/j.jbiomech.2015.12.032

    Article  PubMed  Google Scholar 

  30. Porzionato A, Sfriso MM, Macchi V et al (2013) Decellularized omentum as novel biologic scaffold for reconstructive surgery and regenerative medicine. Eur J Histochem 57(1):e4. https://doi.org/10.4081/ejh.2013.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burk J, Erbe I, Berner D et al (2014) Freeze-thaw cycles enhance decellularization of large tendons. Tissue Eng Part C Methods 20(4):276–284. https://doi.org/10.1089/ten.TEC.2012.0760

    Article  CAS  PubMed  Google Scholar 

  32. Nürnberger S, Schneider C, Keibl C et al (2021) Repopulation of decellularised articular cartilage by laser-based matrix engraving. EBioMedicine 64:103196. https://doi.org/10.1016/j.ebiom.2020.103196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim YJ, Sah RL, Doong JY et al (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174(1):168–176. https://doi.org/10.1016/0003-2697(88)90532-5

    Article  CAS  PubMed  Google Scholar 

  34. Schneider C, Lehmann J, van Osch GJ et al (2016) Systematic comparison of protocols for the preparation of human articular cartilage for use as scaffold material in cartilage tissue engineering. Tissue Eng Part C Methods 22(12):1095–1107. https://doi.org/10.1089/ten.TEC.2016.0380

    Article  CAS  PubMed  Google Scholar 

  35. Greenwell P, Knowles JR, Sharp H (1969) The inhibition of pepsin-catalysed reactions by products and product analogues. Kinetic evidence for ordered release of products. Biochem J 113(2):363–368. https://doi.org/10.1042/bj1130363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hodde J, Hiles M (2002) Virus safety of a porcine-derived medical device: evaluation of a viral inactivation method. Biotechnol Bioeng 79(2):211–216. https://doi.org/10.1002/bit.10281

    Article  CAS  PubMed  Google Scholar 

  37. Hodde J, Janis A, Ernst D et al (2007) Effects of sterilization on an extracellular matrix scaffold: part I. Composition and matrix architecture. J Mater Sci Mater Med 18(4):537–543. https://doi.org/10.1007/s10856-007-2300-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Austrian Research Promotion Agency FFG (project CartiScaff, #842455), as well as the Lorenz Böhler Fonds (16/13). The authors wish to thank all cooperation partners who were involved in those projects and coauthors of the publication Schneider and coworkers [34].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Nürnberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schneider, C., Nürnberger, S. (2023). Decellularization of Articular Cartilage: A Hydrochloric Acid–Based Strategy. In: Stoddart, M.J., Della Bella, E., Armiento, A.R. (eds) Cartilage Tissue Engineering. Methods in Molecular Biology, vol 2598. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2839-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2839-3_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2838-6

  • Online ISBN: 978-1-0716-2839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation