Evaluation of miRNA Expression in 3D In Vitro Scaffold-Based Cancer Models

  • Protocol
  • First Online:
MicroRNA Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2595))

Abstract

Accumulating experimental evidence suggests that 3D in vitro cancer models strengthen our understanding of vital processes in the tumor microenvironment (TME) and accelerate the drug discovery pipeline. Previous studies examining the effects of specific miRNAs on cancer cells in vitro have involved ectopic expression of miRNA mimics in 2D in vitro culture. Assessment of cell viability and gene expression ensures that upregulation of the chosen miRNA and repression of its target genes have been achieved. However, this 2D culture is overly simplified and lacks the complex cell to extracellular matrix (ECM) interactions observed in the native TME, yielding results often not reproduced when progressed to in vivo studies. Hence, this chapter describes a novel method of overexpressing the miRNA mimic in cells cultured on 3D collagen-based scaffolds adapted from tissue engineering techniques. Cell growth on scaffolds is sequentially monitored via a DNA quantification assay, and overexpression of the miRNA mimic and repression of its target gene is assessed via reverse transcription quantitative PCR (RT-qPCR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 109.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402. https://doi.org/10.3389/FENDO.2018.00402

    Article  Google Scholar 

  2. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 158(15):509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  Google Scholar 

  3. de Rie D, Abugessaisa I, Alam T et al (2017) An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 359(35):872–878. https://doi.org/10.1038/nbt.3947

    Article  CAS  Google Scholar 

  4. Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79:581–588. https://doi.org/10.1093/CVR/CVN156

    Article  CAS  Google Scholar 

  5. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 156(15):321–333. https://doi.org/10.1038/nrc3932

    Article  CAS  Google Scholar 

  6. Romaine S, Tomaszewski M, Condorelli G, Samani N (2015) MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart 101:921–928. https://doi.org/10.1136/HEARTJNL-2013-305402

    Article  CAS  Google Scholar 

  7. Pua H, Ansel K (2015) MicroRNA regulation of allergic inflammation and asthma. Curr Opin Immunol 36:101–108. https://doi.org/10.1016/J.COI.2015.07.006

    Article  CAS  Google Scholar 

  8. Issler O, Chen A (2015) Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci 16:201–212. https://doi.org/10.1038/NRN3879

    Article  CAS  Google Scholar 

  9. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 163(16):203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  Google Scholar 

  10. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173. https://doi.org/10.1007/S00216-010-3821-6

    Article  CAS  Google Scholar 

  11. Wan X, Zhang Y, Lan M et al (2018) Meiotic arrest and spindle defects are associated with altered KIF11 expression in porcine oocytes. Environ Mol Mutagen 59:805–812. https://doi.org/10.1002/EM.22213

    Article  CAS  Google Scholar 

  12. Nolan J, Stallings RL, Piskereva O (2017) Assessment of basic biological functions exerted by miRNAs. Methods Mol Biol 1509:11–16. https://doi.org/10.1007/978-1-4939-6524-3_2

    Article  CAS  Google Scholar 

  13. Nolan JC, Frawley T, Tighe J et al (2020) Preclinical models for neuroblastoma: advances and challenges. Cancer Lett 474:53–62. https://doi.org/10.1016/J.CANLET.2020.01.015

    Article  CAS  Google Scholar 

  14. Costard LS, Hosn RR, Ramanayake H et al (2021) Influences of the 3D microenvironment on cancer cell behaviour and treatment responsiveness: a recent update on lung, breast and prostate cancer models. Acta Biomater. https://doi.org/10.1016/j.actbio.2021.01.023

  15. Gallagher C, Murphy C, O’Brien FJ, Piskareva O (2021) Three-dimensional in vitro biomimetic model of Neuroblastoma using collagen-based scaffolds. J Vis Exp:e62627. https://doi.org/10.3791/62627

  16. Curtin C, Nolan JC, Conlon R et al (2018) A physiologically relevant 3D collagen-based scaffold–neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta Biomater 70:84–97. https://doi.org/10.1016/j.actbio.2018.02.004

    Article  CAS  Google Scholar 

  17. Ouellette JN, Drifka CR, Pointer KB et al (2021) Navigating the collagen jungle: the biomedical potential of fiber organization in cancer. Bioengineering 8:1–19

    Article  Google Scholar 

  18. Lowe B, Hardy JG, Walsh LJ (2020) Optimizing Nanohydroxyapatite nanocomposites for bone tissue engineering. ACS Omega 5:1–9

    Article  CAS  Google Scholar 

  19. Curtin CM, Cunniffe GM, Lyons FG et al (2012) Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. Adv Mater 24:749–754. https://doi.org/10.1002/adma.201103828

    Article  CAS  Google Scholar 

  20. O’Brien FJ, Harley BA, Yannas IV, Gibson L (2004) Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25:1077–1086. https://doi.org/10.1016/S0142-9612(03)00630-6

    Article  CAS  Google Scholar 

  21. Haugh MG, Jaasma MJ, O’Brien FJ (2009) The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. J Biomed Mater Res A 89:363–369. https://doi.org/10.1002/jbm.a.31955

    Article  CAS  Google Scholar 

  22. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26:433–441. https://doi.org/10.1016/j.biomaterials.2004.02.052

    Article  CAS  Google Scholar 

  23. Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466. https://doi.org/10.1016/j.biomaterials.2009.09.063

    Article  CAS  Google Scholar 

  24. Cunniffe GM, Dickson GR, Partap S et al (2010) Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering. J Mater Sci Mater Med 21:2293–2298. https://doi.org/10.1007/s10856-009-3964-1

    Article  CAS  Google Scholar 

  25. Haugh MG, Murphy CM, McKiernan RC et al (2011) Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng Part A 17:1201–1208. https://doi.org/10.1089/ten.tea.2010.0590

    Article  CAS  Google Scholar 

  26. Tierney CM, Haugh MG, Liedl J et al (2009) The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 2:202–209. https://doi.org/10.1016/j.jmbbm.2008.08.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Piskareva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Murphy, C., Gallagher, C., Piskareva, O. (2023). Evaluation of miRNA Expression in 3D In Vitro Scaffold-Based Cancer Models. In: Rani, S. (eds) MicroRNA Profiling. Methods in Molecular Biology, vol 2595. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2823-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2823-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2822-5

  • Online ISBN: 978-1-0716-2823-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation