Full-Length Transcript Phasing with Third-Generation Sequencing

  • Protocol
  • First Online:
Haploty**

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2590))

Abstract

Haploty** individual full-length transcripts can be important in diagnosis and treatment of certain genetic diseases. One set of diseases, repeat expansions of simple tandem repeat sequences are the cause of over 40 neurological disorders. In many of these conditions, expanding a polymorphic repeat beyond a given threshold has been strongly associated with disease onset and severity. Given that most repeat expansions are inherited in an autosomal dominant pattern, repeat expansion disorders are typically characterized by a heterozygous expansion locus associated with a single haplotype. Precision genetic medicines can be used to selectively target expansion-containing sequences in a haplotype-specific manner.

However, repeat expansion lengths often exceed the capacity of next-generation sequencing (NGS) reads. Therefore, the accurate length and haplotype determination of repeat expansions requires special considerations and requires the development of custom methods. Here we highlight a method for targeted haplotype phasing of the HTT gene, which can be adopted for use with other full-length transcripts and in other repeat expansion disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 109.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155(4):934–947. https://doi.org/10.1016/j.cell.2013.09.053

    Article  CAS  PubMed  Google Scholar 

  2. Corradin O, Saiakhova A, Akhtar-Zaidi B, Myeroff L, Willis J, Cowper Sal-lari R, Lupien M, Markowitz S, Scacheri PC (2014) Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res 24(1):1–13. https://doi.org/10.1101/gr.164079.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paulson H (2018) Repeat expansion diseases. Handb Clin Neurol 147:105–123. https://doi.org/10.1016/B978-0-444-63233-3.00009-9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Depienne C, Mandel JL (2021) 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am J Hum Genet 108(5):764–785. https://doi.org/10.1016/j.ajhg.2021.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roberts TC, Langer R, Wood MJA (2020) Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 19(10):673–694. https://doi.org/10.1038/s41573-020-0075-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rinaldi C, Wood MJA (2018) Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 14(1):9–21. https://doi.org/10.1038/nrneurol.2017.148

    Article  CAS  PubMed  Google Scholar 

  7. Crooke ST, Liang XH, Baker BF, Crooke RM (2021) Antisense technology: a review. J Biol Chem 296:100416. https://doi.org/10.1016/j.jbc.2021.100416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dugger SA, Platt A, Goldstein DB (2018) Drug development in the era of precision medicine. Nat Rev Drug Discov 17(3):183–196. https://doi.org/10.1038/nrd.2017.226

    Article  CAS  PubMed  Google Scholar 

  9. Liu CR, Cheng TH (2015) Allele-selective suppression of mutant genes in polyglutamine diseases. J Neurogenet 29(2–3):41–49. https://doi.org/10.3109/01677063.2015.1073275

    Article  CAS  PubMed  Google Scholar 

  10. Miller JRC, Pfister EL, Liu W, Andre R, Trager U, Kennington LA, Lo K, Dijkstra S, Macdonald D, Ostroff G, Aronin N, Tabrizi SJ (2017) Allele-selective suppression of mutant huntingtin in primary human blood cells. Sci Rep 7:46740. https://doi.org/10.1038/srep46740

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zeitler B, Froelich S, Marlen K, Shivak DA, Yu Q, Li D, Pearl JR, Miller JC, Zhang L, Paschon DE, Hinkley SJ, Ankoudinova I, Lam S, Guschin D, Kopan L, Cherone JM, Nguyen HB, Qiao G, Ataei Y, Mendel MC, Amora R, Surosky R, Laganiere J, Vu BJ, Narayanan A, Sedaghat Y, Tillack K, Thiede C, Gartner A, Kwak S, Bard J, Mrzljak L, Park L, Heikkinen T, Lehtimaki KK, Svedberg MM, Haggkvist J, Tari L, Toth M, Varrone A, Halldin C, Kudwa AE, Ramboz S, Day M, Kondapalli J, Surmeier DJ, Urnov FD, Gregory PD, Rebar EJ, Munoz-Sanjuan I, Zhang HS (2019) Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat Med 25(7):1131–1142. https://doi.org/10.1038/s41591-019-0478-3

    Article  CAS  PubMed  Google Scholar 

  12. Wu J, Tang B, Tang Y (2020) Allele-specific genome targeting in the development of precision medicine. Theranostics 10(7):3118–3137. https://doi.org/10.7150/thno.43298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P, Randolph J, Roesch EB, Chattopadhyaya J, Damha MJ, Bennett CF, Montaillier C, Lemaitre M, Corey DR (2010) Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat. Biochemistry 49(47):10166–10178. https://doi.org/10.1021/bi101208k

    Article  CAS  PubMed  Google Scholar 

  14. Claassen DO, Corey-Bloom J, Dorsey ER, Edmondson M, Kostyk SK, LeDoux MS, Reilmann R, Rosas HD, Walker F, Wheelock V, Svrzikapa N, Longo KA, Goyal J, Hung S, Panzara MA (2020) Genoty** single nucleotide polymorphisms for allele-selective therapy in Huntington disease. Neurol Genet 6(3):e430. https://doi.org/10.1212/NXG.0000000000000430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, Ebler J, Fungtammasan A, Kolesnikov A, Olson ND, Topfer A, Alonge M, Mahmoud M, Qian Y, Chin CS, Phillippy AM, Schatz MC, Myers G, DePristo MA, Ruan J, Marschall T, Sedlazeck FJ, Zook JM, Li H, Koren S, Carroll A, Rank DR, Hunkapiller MW (2019) Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 37(10):1155–1162. https://doi.org/10.1038/s41587-019-0217-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Payne A, Holmes N, Rakyan V, Loose M (2019) BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files. Bioinformatics 35(13):2193–2198. https://doi.org/10.1093/bioinformatics/bty841

    Article  CAS  PubMed  Google Scholar 

  17. Svrzikapa N, Longo KA, Prasad N, Boyanapalli R, Brown JM, Dorset D, Yourstone S, Powers J, Levy SE, Morris AJ, Vargeese C, Goyal J (2020) Investigational assay for haplotype phasing of the huntingtin gene. Mol Ther Methods Clin Dev 19:162–173. https://doi.org/10.1016/j.omtm.2020.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Svrzikapa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Svrzikapa, N., Boyanapalli, R. (2023). Full-Length Transcript Phasing with Third-Generation Sequencing. In: Peters, B.A., Drmanac, R. (eds) Haploty**. Methods in Molecular Biology, vol 2590. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2819-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2819-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2818-8

  • Online ISBN: 978-1-0716-2819-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation