Rodent Models for Studying the Impact of Variation in Early Life Mother–Infant Interactions on Mood and Anxiety

  • Protocol
  • First Online:
Psychiatric Vulnerability, Mood, and Anxiety Disorders

Part of the book series: Neuromethods ((NM,volume 190))

  • 828 Accesses

Abstract

The early life origins of risk for mood disorders and anxiety are supported by longitudinal studies in humans, particularly those focused on the experience of childhood adversity. Animal models have further supported the association between stress exposure during infancy and neurodevelopmental and physiological processes that shape behavioral indices of depression and anxiety. In rodents, these models have focused on disruption to mother–infant interactions that occur either naturally or through manipulation of the quantity and/or quality of maternal care. Though these models are challenging to implement, they serve as essential tools for establishing or characterizing the neurodevelopmental trajectories that lead to increased risk of psychopathology. In this chapter, we will describe methods that can be used to quantify maternal behavior in rats and mice, with particular emphasis on the use of newly developed video recording and machine learning approaches. We will also describe the premise and protocol for an established methodology to effectively manipulate mother–infant interactions within experimental designs that are exploring neurobiological and behavioral outcomes in offspring. This limited bedding and nesting material (LBN) manipulation is used broadly to study the impact of early life stress in rodents and when combined with high-resolution behavioral quantification approaches can yield novel hypotheses regarding the molecular, cellular, physiological, and behavioral mechanisms that contribute to altered brain function across the life span.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 189.89
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Petruccelli K, Davis J, Berman T (2019) Adverse childhood experiences and associated health outcomes: a systematic review and meta-analysis. Child Abuse Negl 97:104127. https://doi.org/10.1016/j.chiabu.2019.104127

    Article  PubMed  Google Scholar 

  2. Trickett PK, McBride-Chang C (1995) The developmental impact of different forms of child abuse and neglect. Dev Rev 15:311–337. https://doi.org/10.1006/drev.1995.1012

    Article  Google Scholar 

  3. Sánchez MM, Ladd CO, Plotsky PM (2001) Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev Psychopathol 13:419–449

    Article  Google Scholar 

  4. Kundakovic M, Lim S, Gudsnuk K, Champagne FA (2013) Sex-specific and strain-dependent effects of early life adversity on behavioral and epigenetic outcomes. Front Psychiatry 4:78. https://doi.org/10.3389/fpsyt.2013.00078

    Article  PubMed  PubMed Central  Google Scholar 

  5. Franklin TB, Russig H, Weiss IC et al (2010) Epigenetic transmission of the impact of early stress across generations. Biological psychiatry 68:408–415. https://doi.org/10.1016/j.biopsych.2010.05.036

    Article  PubMed  Google Scholar 

  6. Rice CJ, Sandman CA, Lenjavi MR, Baram TZ (2008) A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology 149:4892–4900. https://doi.org/10.1210/en.2008-0633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Franks B, Curley JP, Champagne FA (2011) Measuring variations in maternal behavior: relevance for studies of mood and anxiety. In: Gould TD (ed) Mood and anxiety related phenotypes in mice: characterization using behavioral tests, vol II. Humana Press, Totowa, pp 209–224

    Chapter  Google Scholar 

  8. Molet J, Heins K, Zhuo X et al (2016) Fragmentation and high entropy of neonatal experience predict adolescent emotional outcome. Transl Psychiatry 6:e702–e702. https://doi.org/10.1038/tp.2015.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walker C-D, Bath KG, Joels M et al (2017) Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress 20:421–448. https://doi.org/10.1080/10253890.2017.1343296

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lapp HE, Mueller I, Moore CL (2020) Limited bedding and nesting material changes indices of cellular metabolism and behavioral thermal regulation in Long-Evans rats during the first two weeks of life. Physiol Behav 222:112957. https://doi.org/10.1016/j.physbeh.2020.112957

    Article  CAS  PubMed  Google Scholar 

  11. Bath K, Manzano-Nieves G, Goodwill H (2016) Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice. Horm Behav 82:64–71. https://doi.org/10.1016/j.yhbeh.2016.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Molet J, Maras PM, Avishai-Eliner S, Baram TZ (2014) Naturalistic rodent models of chronic early-life stress. Dev Psychobiol 56:1675–1688. https://doi.org/10.1002/dev.21230

    Article  PubMed  PubMed Central  Google Scholar 

  13. McLaughlin RJ, Verlezza S, Gray JM et al (2016) Inhibition of anandamide hydrolysis dampens the neuroendocrine response to stress in neonatal rats subjected to suboptimal rearing conditions. Stress 19:114–124. https://doi.org/10.3109/10253890.2015.1117448

    Article  CAS  PubMed  Google Scholar 

  14. Moussaoui N, Jacobs JP, Larauche M et al (2017) Chronic early-life stress in rat pups alters basal corticosterone, intestinal permeability, and fecal microbiota at weaning: influence of sex. J Neurogastroenterol Motil 23:135–143. https://doi.org/10.5056/jnm16105

    Article  PubMed  PubMed Central  Google Scholar 

  15. Brunson KL, Kramár E, Lin B et al (2005) Mechanisms of late-onset cognitive decline after early-life stress. J Neurosci 25:9328–9338. https://doi.org/10.1523/JNEUROSCI.2281-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ivy AS, Rex CS, Chen Y et al (2010) Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors. J Neurosci 30:13005–13015. https://doi.org/10.1523/JNEUROSCI.1784-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gunn BG, Cunningham L, Cooper MA et al (2013) Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response. J Neurosci 33:19534–19554. https://doi.org/10.1523/JNEUROSCI.1337-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raineki C, Moriceau S, Sullivan RM (2010) Develo** a neurobehavioral animal model of infant attachment to an abusive caregiver. Biol Psychiatry 67:1137–1145. https://doi.org/10.1016/j.biopsych.2009.12.019

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang X-D, Labermaier C, Holsboer F et al (2012) Early-life stress-induced anxiety-related behavior in adult mice partially requires forebrain corticotropin-releasing hormone receptor 1. Eur J Neurosci 36:2360–2367. https://doi.org/10.1111/j.1460-9568.2012.08148.x

    Article  PubMed  Google Scholar 

  20. Bath KG, Nitenson AS, Lichtman E et al (2017) Early life stress leads to developmental and sex selective effects on performance in a novel object placement task. Neurobiol Stress 7:57–67. https://doi.org/10.1016/j.ynstr.2017.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rincón-Cortés M, Sullivan RM (2016) Emergence of social behavior deficit, blunted corticolimbic activity and adult depression-like behavior in a rodent model of maternal maltreatment. Transl Psychiatry 6:e930. https://doi.org/10.1038/tp.2016.205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang L, Jiao J, Dulawa SC (2011) Infant maternal separation impairs adult cognitive performance in BALB/cJ mice. Psychopharmacology (Berl) 216:207–218. https://doi.org/10.1007/s00213-011-2209-4

    Article  CAS  Google Scholar 

  23. Yan C-G, Rincón-Cortés M, Raineki C et al (2017) Aberrant development of intrinsic brain activity in a rat model of caregiver maltreatment of offspring. Transl Psychiatry 7:e1005. https://doi.org/10.1038/tp.2016.276

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guadagno A, Wong TP, Walker C-D (2018) Morphological and functional changes in the preweaning basolateral amygdala induced by early chronic stress associate with anxiety and fear behavior in adult male, but not female rats. Prog Neuropsychopharmacol Biol Psychiatry 81:25–37. https://doi.org/10.1016/j.pnpbp.2017.09.025

    Article  PubMed  Google Scholar 

  25. Malter Cohen M, **g D, Yang RR et al (2013) Early-life stress has persistent effects on amygdala function and development in mice and humans. Proc Natl Acad Sci U S A 110:18274–18278. https://doi.org/10.1073/pnas.1310163110

    Article  PubMed  PubMed Central  Google Scholar 

  26. Champagne FA, Curley JP, Keverne EB, Bateson PPG (2007) Natural variations in postpartum maternal care in inbred and outbred mice. Physiol Behav 91:325–334. https://doi.org/10.1016/j.physbeh.2007.03.014

    Article  CAS  PubMed  Google Scholar 

  27. Champagne FA, Francis DD, Mar A, Meaney MJ (2003) Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol Behav 79:359–371

    Article  CAS  Google Scholar 

  28. Meaney (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192. https://doi.org/10.1146/annurev.neuro.24.1.1161

  29. Champagne FA, Curley JP (2009) Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci Biobehav Rev 33:593–600

    Article  Google Scholar 

  30. Holschbach MA, Vitale EM, Lonstein JS (2018) Serotonin-specific lesions of the dorsal raphe disrupt maternal aggression and caregiving in postpartum rats. Behav Brain Res 348:53–64. https://doi.org/10.1016/j.bbr.2018.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gammie SC, Nelson RJ (2001) cFOS and pCREB activation and maternal aggression in mice. Brain Res 898:232–241. https://doi.org/10.1016/s0006-8993(01)02189-8

    Article  CAS  PubMed  Google Scholar 

  32. Carlier M, Roubertoux P, Cohen-Salmon C (1982) Differences in patterns of pup care in Mus musculus domesticus l-Comparisons between eleven inbred strains. Behav Neural Biol 35:205–210. https://doi.org/10.1016/s0163-1047(82)91213-4

    Article  CAS  PubMed  Google Scholar 

  33. Scarola S, Kent M, Neal S et al (2020) Postpartum environmental challenges alter maternal responsiveness and offspring development. Horm Behav 122:104761. https://doi.org/10.1016/j.yhbeh.2020.104761

    Article  CAS  PubMed  Google Scholar 

  34. McIver AH, Jeffrey WE (1967) Strain differences in maternal behavior in rats. Behaviour 28:210–216

    Article  CAS  Google Scholar 

  35. Moore CL, Wong L, Daum MC, Leclair OU (1997) Mother-infant interactions in two strains of rats: implications for dissociating mechanism and function of a maternal pattern. Dev Psychobiol 30:301–312. https://doi.org/10.1002/(SICI)1098-2302(199705)30:4<301::AID-DEV4>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  36. Caldji C, Diorio J, Anisman H, Meaney MJ (2004) Maternal behavior regulates benzodiazepine/GABAA receptor subunit expression in brain regions associated with fear in BALB/c and C57BL/6 mice. Neuropsychopharmacology 29:1344–1352. https://doi.org/10.1038/sj.npp.1300436

    Article  CAS  PubMed  Google Scholar 

  37. Priebe K, Romeo RD, Francis DD et al (2005) Maternal influences on adult stress and anxiety-like behavior in C57BL/6J and BALB/cJ mice: a cross-fostering study. Dev Psychobiol 47:398–407. https://doi.org/10.1002/dev.20098

    Article  CAS  PubMed  Google Scholar 

  38. Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158. https://doi.org/10.1126/science.286.5442.1155

    Article  CAS  PubMed  Google Scholar 

  39. Lapp HE, Moore CL (2020) Uncovering sources of maternal variability: inherited and environmental contributions to maternal phenotype. Dev Psychobiol 62:684–692. https://doi.org/10.1002/dev.21958

    Article  PubMed  Google Scholar 

  40. Coutellier L, Friedrich A-C, Failing K et al (2009) Effects of foraging demand on maternal behaviour and adult offspring anxiety and stress response in C57BL/6 mice. Behav Brain Res 196:192–199. https://doi.org/10.1016/j.bbr.2008.08.042

    Article  PubMed  Google Scholar 

  41. Curley JP, Davidson S, Bateson P, Champagne FA (2009) Social enrichment during postnatal development induces transgenerational effects on emotional and reproductive behavior in mice. Front Behav Neurosci 3:25. https://doi.org/10.3389/neuro.08.025.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Curley JP, Rock V, Moynihan AM et al (2010) Developmental shifts in the behavioral phenotypes of inbred mice: the role of postnatal and juvenile social experiences. Behav Genet 40:220–232. https://doi.org/10.1007/s10519-010-9334-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weber WD, Fisher HS (2019) An inexpensive remotely-operated video recording system for continuous behavioral observations. bioRxiv 596106. https://doi.org/10.1101/596106

  44. Singh S, Bermudez-Contreras E, Nazari M et al (2019) Low-cost solution for rodent home-cage behaviour monitoring. PLOS ONE 14:e0220751. https://doi.org/10.1371/journal.pone.0220751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moriceau S, Shionoya K, Jakubs K, Sullivan RM (2009) Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine. J Neurosci 29:15745–15755. https://doi.org/10.1523/JNEUROSCI.4106-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roth TL, Matt S, Chen K, Blaze J (2014) Bdnf DNA methylation modifications in the hippocampus and amygdala of male and female rats exposed to different caregiving environments outside the homecage. Dev Psychobiol 56:1755–1763. https://doi.org/10.1002/dev.21218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Orso R, Creutzberg KC, Kestering-Ferreira E et al (2020) Maternal separation combined with limited bedding increases anxiety-like behavior and alters hypothalamic-pituitary-adrenal axis function of male BALB/cJ mice. Front Behav Neurosci 14:600766. https://doi.org/10.3389/fnbeh.2020.600766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pastell M (2016) CowLog – cross-platform application for coding behaviours from video. J Open Res Softw 4:e15. https://doi.org/10.5334/jors.113

    Article  Google Scholar 

  49. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations – Friard – 2016 – Methods in Ecology and Evolution – Wiley Online Library. https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12584. Accessed 24 June 2021

  50. Pereira TD, Tabris N, Li J, et al (2020) SLEAP: multi-animal pose tracking. bioRxiv 2020.08.31.276246. https://doi.org/10.1101/2020.08.31.276246

  51. Mathis A, Mamidanna P, Cury KM et al (2018) DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci 21:1281–1289. https://doi.org/10.1038/s41593-018-0209-y

    Article  CAS  PubMed  Google Scholar 

  52. Nath T, Mathis A, Chen AC et al (2019) Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat Protoc 14:2152–2176. https://doi.org/10.1038/s41596-019-0176-0

    Article  CAS  PubMed  Google Scholar 

  53. Lauer J, Zhou M, Ye S, et al (2021) Multi-animal pose estimation and tracking with DeepLabCut. bioRxiv 2021.04.30.442096. https://doi.org/10.1101/2021.04.30.442096

  54. Wiltschko AB, Tsukahara T, Zeine A et al (2020) Revealing the structure of pharmacobehavioral space through motion sequencing. Nat Neurosci 23:1433–1443. https://doi.org/10.1038/s41593-020-00706-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hsu AI, Yttri EA (2021) An open source unsupervised algorithm for identification and fast prediction of behaviors. bioRxiv 770271. https://doi.org/10.1101/770271

  56. Kabra M, Robie AA, Rivera-Alba M et al (2013) JAABA: interactive machine learning for automatic annotation of animal behavior. Nat Methods 10:64–67. https://doi.org/10.1038/nmeth.2281

    Article  CAS  PubMed  Google Scholar 

  57. Nilsson SR, Goodwin NL, Choong JJ et al (2020) Simple Behavioral Analysis (SimBA) – an open source toolkit for computer classification of complex social behaviors in experimental animals. bioRxiv 2020.04.19.049452. https://doi.org/10.1101/2020.04.19.049452

  58. (2021) ETHZ-INS/DLCAnalyzer. ETHZ-INS

    Google Scholar 

  59. Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press

    Book  Google Scholar 

  60. Singer JD, Willett JB Applied longitudinal data analysis: modeling change and event occurrence. Oxford University Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances A. Champagne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lapp, H.E., Champagne, F.A. (2023). Rodent Models for Studying the Impact of Variation in Early Life Mother–Infant Interactions on Mood and Anxiety. In: Harro, J. (eds) Psychiatric Vulnerability, Mood, and Anxiety Disorders. Neuromethods, vol 190. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2748-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2748-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2747-1

  • Online ISBN: 978-1-0716-2748-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation