Post-bisulfite Adaptor Tagging Based on an ssDNA Ligation Technique (tPBAT)

  • Protocol
  • First Online:
Epigenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2577))

Abstract

Post-bisulfite adaptor tagging (PBAT) is a concept that enables the preparation of an efficient sequencing library from bisulfite-treated DNA, and it also means the protocol implemented the concept. Although the previous PBAT or rPBAT was sensitive enough for single-cell methylome analysis, the protocol had several drawbacks owing to the repeated random priming reactions. To resolve these problems, we developed a unique single-strand DNA ligation technique, termed TACS ligation, and established a new protocol called tPBAT. With tPBAT, the data quality improved, with a longer insert and higher map** rate than that obtained with rPBAT. In addition, paired-end sequencing and indexing were supported by the default. In this chapter, the tPBAT protocol is introduced, and a thorough description of its application to small samples is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219. https://doi.org/10.1038/nature06745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3):523–536. https://doi.org/10.1016/j.cell.2008.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adey A, Shendure J (2012) Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res 22(6):1139–1143. https://doi.org/10.1101/gr.136242.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miura F, Enomoto Y, Dairiki R et al (2012) Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 40(17):e136. https://doi.org/10.1093/nar/gks454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raine A, Manlig E, Wahlberg P et al (2017) SPlinted Ligation Adapter Tagging (SPLAT), a novel library preparation method for whole genome bisulphite sequencing. Nucleic Acids Res 45(6):e36–e36. https://doi.org/10.1093/nar/gkw1110

    Article  CAS  PubMed  Google Scholar 

  6. Hui T, Cao Q, Wegrzyn-Woltosz J et al (2018) High-resolution single-cell DNA methylation measurements reveal epigenetically distinct hematopoietic stem cell subpopulations. Stem Cell Rep 11(2):578–592. https://doi.org/10.1016/j.stemcr.2018.07.003

    Article  CAS  Google Scholar 

  7. Sun Z, Vaisvila R, Yan B et al (2019) Non-destructive enzymatic deamination enables single molecule long read sequencing for the determination of 5-methylcytosine and 5-hydroxymethylcytosine at single base resolution. Genome Res. https://doi.org/10.1101/2019.12.20.885061

  8. Vaisvila R, Ponnaluri VKC, Sun Z et al (2021) Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. https://doi.org/10.1101/gr.266551.120

  9. Simpson JT, Workman RE, Zuzarte PC et al (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14(4):407–410. https://doi.org/10.1038/nmeth.4184

    Article  CAS  PubMed  Google Scholar 

  10. Wallace EV, Stoddart D, Heron AJ et al (2010) Identification of epigenetic DNA modifications with a protein nanopore. Chem Commun (Camb) 46(43):8195–8197. https://doi.org/10.1039/c0cc02864a

    Article  CAS  Google Scholar 

  11. Smallwood SA, Lee HJ, Angermueller C et al (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11(8):817–820. https://doi.org/10.1038/nmeth.3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miura F, Shibata Y, Miura M et al (2019) Highly efficient single-stranded DNA ligation technique improves low-input whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 47(15):e85. https://doi.org/10.1093/nar/gkz435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shirane K, Miura F, Ito T et al (2020) NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nat Genet 52(10):1088–1098. https://doi.org/10.1038/s41588-020-0689-z

    Article  CAS  PubMed  Google Scholar 

  14. Hamazaki N, Kyogoku H, Araki H et al (2021) Reconstitution of the oocyte transcriptional network with transcription factors. Nature 589(7841):264–269. https://doi.org/10.1038/s41586-020-3027-9

    Article  CAS  PubMed  Google Scholar 

  15. Toh H, Shirane K, Miura F et al (2017) Software updates in the Illumina HiSeq platform affect whole-genome bisulfite sequencing. BMC Genomics 18(1):31. https://doi.org/10.1186/s12864-016-3392-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suzuki M, Liao W, Wos F et al (2018) Whole-genome bisulfite sequencing with improved accuracy and cost. Genome Res 28(9):1364–1371. https://doi.org/10.1101/gr.232587.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI through grants to F.M. (20H03243) and T.I. (17H06305) and AMED Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) through a grant to T.I. (Grant Number JP20am0101103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihito Miura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miura, F., Shibata, Y., Miura, M., Ito, T. (2023). Post-bisulfite Adaptor Tagging Based on an ssDNA Ligation Technique (tPBAT). In: Hatada, I., Horii, T. (eds) Epigenomics. Methods in Molecular Biology, vol 2577. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2724-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2724-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2723-5

  • Online ISBN: 978-1-0716-2724-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation