A Three-Dimensional Organoid Culture System to Model Invasive Patterns of Patient-Derived Glioma Stem Cells

  • Protocol
  • First Online:
Brain Organoid Research

Part of the book series: Neuromethods ((NM,volume 189))

  • 784 Accesses

Abstract

Glioblastoma multiformes (GBMs) are recurring brain tumors containing self-renewing glioma stem cells (GSCs), which contribute to tumor initiation and therapy resistance. These tumors are heterogeneous in cellular composition and are highly invasive. In addition, their ability to invade surrounding tissue away from the tumor core makes this cancer difficult to treat. Until recently, the methods for culturing GSCs and studying their invasion patterns were not modeled in human-relevant culture systems. We describe a protocol that constitutes multiple assays to study GSC invasion into human brain-like tissue organoids derived from iPSCs. These methods can be easily adopted in an existing cell culture lab facility. This chapter aims to provide researchers with detailed step-by-step procedure for generating 3D brain organoids and different assay methods to study invasion patterns of patient-derived GSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Álvarez-Satta M, Matheu A (2018) Primary cilium and glioblastoma. Ther Adv Med Oncol 10:1758835918801169

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hubert CG et al (2016) A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res 76:2465–2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnson DR, O’Neill BP (2012) Glioblastoma survival in the United States before and during the temozolomide era. J Neuro-Oncol 107:359–364

    Article  CAS  Google Scholar 

  4. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant Temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  5. Darmanis S et al (2017) Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep 21:1399–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacob F et al (2020) A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180:188–204.e22

    Article  CAS  PubMed  Google Scholar 

  7. Mandel JJ et al (2018) Inability of positive phase II clinical trials of investigational treatments to subsequently predict positive phase III clinical trials in glioblastoma. Neuro-Oncology 20:113–122

    Article  CAS  PubMed  Google Scholar 

  8. Neftel C et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178:835–849.e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prager BC et al (2019) Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell 24(1):41–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lathia JD et al (2015) Cancer stem cells in glioblastoma. Genes Dev 29(12):1203–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garnier D et al (2018) Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization. Neuro-Oncology 20:236–248

    Article  CAS  PubMed  Google Scholar 

  12. Piper K et al (2021) Glioma stem cells as immunotherapeutic targets: advancements and challenges. Front Oncol 11:1–13

    Article  Google Scholar 

  13. Goranci-Buzhala G et al (2020) Rapid and efficient invasion assay of glioblastoma in human brain organoids. Cell Rep 31:107738

    Article  CAS  PubMed  Google Scholar 

  14. Pernik MN et al (2021) Patient-derived cancer organoids for precision oncology treatment. J Pers Med 11:423

    Article  PubMed  PubMed Central  Google Scholar 

  15. Silvia N, Dai G (2020) Cerebral organoids as a model for glioblastoma multiforme. Curr Opin Biomed Eng 13:152–159

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gómez-Oliva R et al (2021) Evolution of experimental models in the study of glioblastoma: toward finding efficient treatments. Front Oncol 10:614295

    Article  PubMed  PubMed Central  Google Scholar 

  17. Torsvik A et al (2014) U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med 3(4):812–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee J et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403

    Article  CAS  PubMed  Google Scholar 

  19. **e Y et al (2015) The human glioblastoma cell culture resource: validated cell models representing all molecular subtypes. EBioMedicine 2(10):1351–1363

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marziali G et al (2017) A three-microRNA signature identifies two subtypes of glioblastoma patients with different clinical outcomes. Mol Oncol 11(9):1115–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tentler JJ et al (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9(6):338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmid RS, Vitucci M, Miller CR (2012) Genetically engineered mouse models of diffuse gliomas. Brain Res Bull 88(1):72–79

    Article  CAS  PubMed  Google Scholar 

  23. Shou Y et al (2020) The application of brain organoids: from neuronal development to neurological diseases. Front Cell Dev Biol 8:579659

    Article  PubMed  PubMed Central  Google Scholar 

  24. Qian X, Song H, Ming GL (2019) Brain organoids: advances, applications and challenges. Development 146(8):dev166074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gabriel E et al (2020) Human brain organoids to decode mechanisms of microcephaly. Front Cell Neurosci 14:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Linkous A et al (2019) Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep 26(12):3203–3211 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ogawa J et al (2018) Glioblastoma model using human cerebral organoids. Cell Rep 23(4):1220–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rybin MJ et al (2021) Organoid models of glioblastoma and their role in drug discovery. Front Cell Neurosci 15:605255

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goranci-Buzhala G et al (2020) Rapid and efficient invasion assay of glioblastoma in human brain organoids. Cell Rep 31(10):107738

    Article  CAS  PubMed  Google Scholar 

  30. Lenting K et al (2017) Glioma: experimental models and reality. Acta Neuropathol 133(2):263–282

    Article  PubMed  PubMed Central  Google Scholar 

  31. Boye K et al (2017) The role of CXCR3/LRP1 cross-talk in the invasion of primary brain tumors. Nat Commun 8(1):1571

    Article  PubMed  PubMed Central  Google Scholar 

  32. Klingberg A et al (2017) Fully automated evaluation of total glomerular number and capillary tuft size in nephritic kidneys using lightsheet microscopy. J Am Soc Nephrol 28(2):452–459

    Article  CAS  PubMed  Google Scholar 

  33. Gabriel E et al (2016) CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J 35(8):803–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pacioni S et al (2015) Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts. Stem Cell Res Ther 6(1) https://doi.org/10.1186/s13287-015-0185-z

Download references

Acknowledgments

We thank Dr. Boris Görg for offering generous support with their microscope facility. The development of the techniques described in this book chapter was financially supported by grants from Deutsche Forschungsgemeinschaft (DFG) (GO 2301/2-2) and the Fritz-Thyssen Foundation to J.G. and from AIRC (IG 2019 number 23154) to R.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruljothi Mariappan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mariappan, A., Knauth, T., Pallini, R., Gopalakrishnan, J. (2023). A Three-Dimensional Organoid Culture System to Model Invasive Patterns of Patient-Derived Glioma Stem Cells. In: Gopalakrishnan, J. (eds) Brain Organoid Research. Neuromethods, vol 189. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2720-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2720-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2719-8

  • Online ISBN: 978-1-0716-2720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation