Biophysical Analysis of Small Molecule Binding to Viral RNA Structures

  • Protocol
  • First Online:
Nucleic Acid Aptamers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2570))

  • 1556 Accesses

Abstract

RNA molecules are essential for carrying genetic information and regulating gene expression in most organisms including human pathogenic RNA and relate retro viruses. Targeting viral RNA (vRNA) structures provide broad opportunities to develop chemical tools to probe molecular virology and to discover novel targets for therapeutic intervention. An increasing number of RNA binding small molecules are being identified, stimulating increased interests in small molecule drug discovery for RNA targets. In this chapter, we describe protocols to characterize and robustly validate vRNA-small molecule (vRNA-sm) interactions starting from vRNA sample preparation, followed by small molecule screening against vRNA targets and finally to validating the vRNA-sm interactions via NMR spectroscopy and calorimetric titrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davila-Calderon J, Patwardhan NN, Chiu LY, Sugarman A, Cai Z, Penutmutchu SR, Li ML, Brewer G, Hargrove AE, Tolbert BS (2020) IRES-targeting small molecule inhibits enterovirus 71 replication via allosteric stabilization of a ternary complex. Nat Commun 11(1):4775

    Article  CAS  Google Scholar 

  2. Levengood JD, Tolbert M, Li ML, Tolbert BS (2013) High-affinity interaction of hnRNP A1 with conserved RNA structural elements is required for translation and replication of enterovirus 71. RNA Biol 10(7):1136–1145

    Article  Google Scholar 

  3. Tolbert M, Morgan CE, Pollum M, Crespo-Hernandez CE, Li ML, Brewer G, Tolbert BS (2017) HnRNP A1 alters the structure of a conserved enterovirus IRES domain to stimulate viral translation. J Mol Biol 429(19):2841–2858

    Article  CAS  Google Scholar 

  4. Gossert AD, Jahnke W (2016) NMR in drug discovery: a practical guide to identification and validation of ligands interacting with biological macromolecules. Prog Nucl Magn Reson Spectrosc 97:82–125

    Article  CAS  Google Scholar 

  5. Zafferani M, Haddad C, Luo L, Davila-Calderon J, Yuan-Chiu L, Shema Mugisha C, Monaghan AG, Kennedy AA, Yesselman JD, Gifford RR, Tai AW, Kutluay SB, Li ML, Brewer G, Tolbert BS, Hargrove AE (2021) Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures. bioRxiv 7(48):eabl6096

    CAS  Google Scholar 

  6. Chillon I, Marcia M, Legiewicz M, Liu F, Somarowthu S, Pyle AM (2015) Native purification and analysis of long RNAs. Methods Enzymol 558:3–37

    Article  CAS  Google Scholar 

  7. Summer H, Grämer R, Dröge P (2009) Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). J Vis Exp (32):1485

    Google Scholar 

  8. Woodson SA, Koculi E (2009) Analysis of RNA folding by native polyacrylamide gel electrophoresis. Methods Enzymol 469:189–208

    Article  CAS  Google Scholar 

  9. Patwardhan NN, Cai Z, Newson CN, Hargrove AE (2019) Fluorescent peptide displacement as a general assay for screening small molecule libraries against RNA. Org Biomol Chem 17(7):1778–1786

    Article  CAS  Google Scholar 

  10. Del Villar-Guerra R, Gray RD, Trent JO, Chaires JB (2018) A rapid fluorescent indicator displacement assay and principal component/cluster data analysis for determination of ligand-nucleic acid structural selectivity. Nucleic Acids Res 46(7):e41

    Article  Google Scholar 

  11. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73

    Article  CAS  Google Scholar 

  12. Pinto IG, Guilbert C, Ulyanov NB, Stearns J, James TL (2008) Discovery of ligands for a novel target, the human telomerase RNA, based on flexible-target virtual screening and NMR. J Med Chem 51(22):7205–7215

    Article  CAS  Google Scholar 

  13. Raingeval C, Cala O, Brion B, Le Borgne M, Hubbard RE, Krimm I (2019) 1D NMR WaterLOGSY as an efficient method for fragment-based lead discovery. J Enzyme Inhib Med Chem 34(1):1218–1225

    Article  CAS  Google Scholar 

  14. Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327

    Article  Google Scholar 

  15. Norris M, Fetler B, Marchant J, Johnson BA (2016) NMRFx Processor: a cross-platform NMR data processing program. J Biomol NMR 65(3–4):205–216

    Article  CAS  Google Scholar 

  16. Dumas P, Ennifar E, Da Veiga C, Bec G, Palau W, Di Primo C, Pineiro A, Sabin J, Munoz E, Rial J (2016) Extending ITC to kinetics with kinITC. Methods Enzymol 567:157–180

    Article  CAS  Google Scholar 

  17. Brutscher B, Boisbouvier J, Pardi A, Marion D, Simorre J-P (1998) Improved sensitivity and resolution in 1H−13C NMR experiments of RNA. J Am Chem Soc 120(46):11845–11851

    Article  CAS  Google Scholar 

  18. Zweckstetter M (2008) NMR: prediction of molecular alignment from structure using the PALES software. Nat Protoc 3(4):679–690

    Article  CAS  Google Scholar 

  19. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160(1):65–73

    Article  CAS  Google Scholar 

  20. Karlsson H, Baronti L, Petzold K (2020) A robust and versatile method for production and purification of large-scale RNA samples for structural biology. RNA 26(8):1023–1037

    Article  CAS  Google Scholar 

  21. Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl 42(8):864–890

    Article  CAS  Google Scholar 

  22. Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) NMR spectroscopy of RNA. Chembiochem 4(10):936–962

    Article  Google Scholar 

  23. Takor G, Morgan CE, Chiu L-Y, Kendrick N, Clark E, Jaiswal R, Tolbert BS (2020) Introducing structure–energy concepts of RNA at the undergraduate level: nearest neighbor thermodynamics and NMR spectroscopy of a GAGA tetraloop. J Chem Educ 97(12):4499–4504

    Article  CAS  Google Scholar 

  24. Ippel JH, Wijmenga SS, de Jong R, Heus HA, Hilbers CW, de Vroom E, van der Marel GA, van Boom JH (1996) Heteronuclear scalar couplings in the bases and sugar rings of nucleic acids: their determination and application in assignment and conformational analysis. Magn Reson Chem 34(13):S156–S176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by National Institutes of Health grants GM126833 and AI150830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanton S. Tolbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chiu, LY., Davila-Calderon, J., Cai, Z., Tolbert, B.S. (2023). Biophysical Analysis of Small Molecule Binding to Viral RNA Structures. In: Mayer, G., Menger, M.M. (eds) Nucleic Acid Aptamers. Methods in Molecular Biology, vol 2570. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2695-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2695-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2694-8

  • Online ISBN: 978-1-0716-2695-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation