Chromosome Conformation Capture for Large Genomes

  • Protocol
  • First Online:
Salamanders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2562))

Abstract

The gigantic 32Gb Axolotl genome inspires fascinating questions such as: how such a big genome is organized and packed in nuclei and how regulation of gene transcription can happen over such large genomic distances. Currently, there are many technical challenges when we investigate chromatin architecture in axolotl. For example, probing promoter–enhancer interactions in such a large genome. Chromatin capture methods (e.g., Chromatin Conformation Capture) have been used in a variety of species. The large size of the axolotl nuclei and its genome requires the adaptation of such methods. Here, we describe a detailed protocol for high-throughput genome-wide conformation capture (Hi-C) using axolotl limb cells. This Hi-C library preparation protocol can also be used to prepare libraries from other nonmodel organisms such as Lungfish and Cephalopods. We believe that our protocol could be useful for a variety of animal systems including other salamanders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Voss SR, Epperlein HH, Tanaka EM (2009) Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harb Protoc 2009(8):pdb emo128. https://doi.org/10.1101/pdb.emo128

    Article  CAS  PubMed  Google Scholar 

  2. Khattak S, Murawala P, Andreas H, Kappert V, Schuez M, Sandoval-Guzman T, Crawford K, Tanaka EM (2014) Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat Protoc 9(3):529–540. https://doi.org/10.1038/nprot.2014.040

    Article  CAS  PubMed  Google Scholar 

  3. Fei JF, Schuez M, Tazaki A, Taniguchi Y, Roensch K, Tanaka EM (2014) CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Reports 3(3):444–459. https://doi.org/10.1016/j.stemcr.2014.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M, Winkler S, Hastie AR, Young G, Roscito JG, Falcon F, Knapp D, Powell S, Cruz A, Cao H, Habermann B, Hiller M, Tanaka EM, Myers EW (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554(7690):50–55. https://doi.org/10.1038/nature25458

    Article  CAS  PubMed  Google Scholar 

  5. Jeramiah J, Smith NT et al (2018) A chromosome-scale assembly of the axolotl genome. Genome Res 29(2):317–324

    Google Scholar 

  6. Schloissnig S, Kawaguchi A, Nowoshilow S, Falcon F, Otsuki L, Tardivo P, Timoshevskaya N, Keinath MC, Smith JJ, Randal Voss S, Tanaka EM (2021) The giant axolotl genome uncovers the evolution, scaling and transcriptional control of complex gene loci. Proc Natl Acad Sci USA 118(15):e2017176118

    Article  CAS  Google Scholar 

  7. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J (2013) Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31(12):1119–1125. https://doi.org/10.1038/nbt.2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaplan N, Dekker J (2013) High-throughput genome scaffolding from in vivo DNA interaction frequency. Nat Biotechnol 31(12):1143–1147. https://doi.org/10.1038/nbt.2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spitz F, Furlong EEM (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13(9):613–626. https://doi.org/10.1038/nrg3207

    Article  CAS  PubMed  Google Scholar 

  10. Rodrigues AR, Yakushiji-Kaminatsui N, Atsuta Y, Andrey G, Schorderet P, Duboule D, Tabin CJ (2017) Integration of Shh and Fgf signaling in controlling Hox gene expression in cultured limb cells. Proc Natl Acad Sci U S A 114(12):3139–3144. https://doi.org/10.1073/pnas.1620767114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13(6):1977–2000. https://doi.org/10.1091/mbc.02-02-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meyer A, Schloissnig S, Franchini P, Du K, Woltering JM, Irisarri I, Wong WY, Nowoshilow S, Kneitz S, Kawaguchi A, Fabrizius A, **ong P, Dechaud C, Spaink HP, Volff JN, Simakov O, Burmester T, Tanaka EM, Schartl M (2021) Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 590(7845):284–289. https://doi.org/10.1038/s41586-021-03198-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Groell AL, Gardiner DM, Bryant SV (1993) Stability of positional identity of axolotl blastema cells in vitro. Rouxs Arch Dev Biol 202:170–175. https://doi.org/10.1007/BF00365307

    Article  PubMed  Google Scholar 

  14. Roy S, Gardiner DM, Bryant SV (2000) Vaccinia as a tool for functional analysis in regenerating limbs: ectopic expression of Shh. Dev Biol 218(2):199–205. https://doi.org/10.1006/dbio.1999.9556

    Article  CAS  PubMed  Google Scholar 

  15. Nagano T, Varnai C, Schoenfelder S, Javierre BM, Wingett SW, Fraser P (2015) Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biol 16:175. https://doi.org/10.1186/s13059-015-0753-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58(3):268–276. https://doi.org/10.1016/j.ymeth.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  17. Natalia Naumova MI, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J (2013) Organization of the mitotic chromosome. Science 342(6161):948–953

    Article  Google Scholar 

  18. Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, Kanemaki MT, **e L, Paulson JR, Earnshaw WC, Mirny LA, Dekker J (2018) A pathway for mitotic chromosome formation. Science 359(6376):eaao6135. https://doi.org/10.1126/science.aao6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. Takuji Sugiura, Dr. Gordana Wutz and Dr. Kota Nagasama (IMP in Vienna Bio-Center), and Dr. Chang Liu (ZMBP, University of Tubingen) for their help giving technical advice. AK was supported by a JSPS Postdoctoral Fellowship for Overseas Researchers. ET was supported by ERC AdG 742046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elly M. Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kawaguchi, A., Tanaka, E.M. (2023). Chromosome Conformation Capture for Large Genomes. In: Seifert, A.W., Currie, J.D. (eds) Salamanders. Methods in Molecular Biology, vol 2562. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2659-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2659-7_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2658-0

  • Online ISBN: 978-1-0716-2659-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation