Modeling N-Glycosylation: A Systems Biology Approach for Evaluating Changes in the Steady-State Organization of Golgi-Resident Proteins

  • Protocol
  • First Online:
Golgi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2557))

  • 1441 Accesses

Abstract

The organization of Golgi-resident proteins is crucial for sorting molecules within the secretory pathway and regulating posttranslational modifications. However, evaluating changes to Golgi organization can be challenging, often requiring extensive experimental investigations. Here, we propose a systems biology approach in which changes to Golgi-resident protein sorting and localization can be deduced using cellular N-glycan profiles as the only experimental input.

The approach detailed here utilizes the influence of Golgi organization on N-glycan biosynthesis to investigate the mechanisms involved in establishing and maintaining Golgi organization. While N-glycosylation is carried out in a non-template-driven manner, the distribution of N-glycan biosynthetic enzymes within the Golgi ensures this process is not completely random. Therefore, changes to N-glycan profiles provide clues into how altered cell phenotypes affect the sorting and localization of Golgi-resident proteins. Here, we generate a stochastic simulation of N-glycan biosynthesis to produce a simulated glycan profile similar to that obtained experimentally and then combine this with Bayesian fitting to enable inference of changes in enzyme amounts and localizations. Alterations to Golgi organization are evaluated by calculating how the fitted enzyme parameters shift when moving from simulating the glycan profile of one cellular state (e.g., a wild type) to an altered cellular state (e.g., a mutant). Our approach illustrates how an iterative combination of mathematical systems biology and minimal experimental cell biology can be utilized to maximally integrate biological knowledge to gain insightful knowledge of the underlying mechanisms in a manner inaccessible to either alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 234.33
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klumperman J (2011) Architecture of the mammalian Golgi. Cold Spring Harb Perspect Biol 3:a005181. https://doi.org/10.1101/CSHPERSPECT.A005181

    Article  Google Scholar 

  2. Füllekrug J, Nilsson T (1998) Protein sorting in the Golgi complex. Biochim Biophys Acta, Mol Cell Res 1404:77. https://doi.org/10.1016/S0167-4889(98)00048-2

    Article  Google Scholar 

  3. Fisher P, Ungar D (2016) Bridging the gap between glycosylation and vesicle traffic. Front Cell Dev Biol 4. https://doi.org/10.3389/FCELL.2016.00015

  4. Zolov SN, Lupashin VV (2005) Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168:747–759. https://doi.org/10.1083/JCB.200412003

    Article  CAS  Google Scholar 

  5. Shestakova A, Zolov S, Lupashin V (2006) COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7:191–204. https://doi.org/10.1111/J.1600-0854.2005.00376.X

    Article  CAS  Google Scholar 

  6. Viinikangas T, Khosrowabadi E, Kellokumpu S (2021) N-Glycan biosynthesis: Basic principles and factors affecting its outcome. Exp Suppl 112:237–257. https://doi.org/10.1007/978-3-030-76912-3_7

  7. Rabouille C, Hui N, Hunte F et al (1995) Map** the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci 108:1617–1627. https://doi.org/10.1242/JCS.108.4.1617

    Article  CAS  Google Scholar 

  8. Ladinsky MS, Mastronarde DN, McIntosh JR et al (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135. https://doi.org/10.1083/JCB.144.6.1135

    Article  CAS  Google Scholar 

  9. Dejgaard SY, Murshid A, Dee KM, Presley JF (2007) Confocal microscopy-based linescan methodologies for intra-Golgi localization of proteins. J Histochem Cytochem 55:709–719. https://doi.org/10.1369/jhc.6A7090.2007

    Article  CAS  Google Scholar 

  10. Han HM, Bouchet-Marquis C, Huebinger J, Grabenbauer M (2013) Golgi apparatus analyzed by cryo-electron microscopy. Histochem Cell Biol 140:369. https://doi.org/10.1007/S00418-013-1136-3

    Article  CAS  Google Scholar 

  11. Huang Y, Ma T, Lau PK et al (2019) Visualization of protein sorting at the trans-Golgi network and endosomes through super-resolution imaging. Front Cell Dev Biol 7:181. https://doi.org/10.3389/FCELL.2019.00181/BIBTEX

    Article  Google Scholar 

  12. Fisher P, Spencer H, Thomas-Oates J et al (2019) Modeling glycan processing reveals Golgi-enzyme homeostasis upon trafficking defects and cellular differentiation. Cell Rep 27:1231–1243.e6. https://doi.org/10.1016/J.CELREP.2019.03.107

    Article  CAS  Google Scholar 

  13. Fisher P, Thomas-Oates J, Wood AJ, Ungar D (2019) The N-glycosylation processing potential of the mammalian Golgi apparatus. Front Cell Dev Biol 7:157. https://doi.org/10.3389/FCELL.2019.00157/BIBTEX

    Article  Google Scholar 

  14. Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434. https://doi.org/10.1016/0021-9991(76)90041-3

    Article  CAS  Google Scholar 

  15. Doob JL (1945) Markoff chains—denumerable case. Trans Am Math Soc 58:455–473. https://doi.org/10.1090/S0002-9947-1945-0013857-4

    Article  Google Scholar 

  16. Toni T, Welch D, Strelkowa N et al (2009) Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6:187–202. https://doi.org/10.1098/RSIF.2008.0172

    Article  Google Scholar 

  17. Csilléry K, Blum MGB, Gaggiotti OE, François O (2010) Approximate Bayesian computation (ABC) in practice. Trends Ecol Evol 25:410–418. https://doi.org/10.1016/J.TREE.2010.04.001

    Article  Google Scholar 

  18. Ha JY, Chou HT, Ungar D et al (2016) Molecular architecture of the complete COG tethering complex. Nat Struct Mol Biol 23:758–760. https://doi.org/10.1038/NSMB.3263

    Article  CAS  Google Scholar 

  19. Ungar D, Oka T, Vasile E et al (2005) Subunit architecture of the conserved oligomeric Golgi complex. J Biol Chem 280:32729–32735. https://doi.org/10.1074/JBC.M504590200

    Article  CAS  Google Scholar 

  20. Ungar D, Oka T, Brittle EE et al (2002) Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157:405–415. https://doi.org/10.1083/JCB.200202016

    Article  CAS  Google Scholar 

  21. Satomaa T, Heiskanen A, Mikkola M et al (2009) The N-glycome of human embryonic stem cells. BMC Cell Biol 10:1–18. https://doi.org/10.1186/1471-2121-10-42/FIGURES/6

    Article  Google Scholar 

  22. Liu Q, Ma H, Sun X et al (2019) The regulatory ZFAS1/miR-150/ST6GAL1 crosstalk modulates sialylation of EGFR via PI3K/Akt pathway in T-cell acute lymphoblastic leukemia. J Exp Clin Cancer Res 38. https://doi.org/10.1186/s13046-019-1208-x

  23. Abdul Rahman S, Bergström E, Watson CJ et al (2014) Filter-aided N-glycan separation (FANGS): a convenient sample preparation method for mass spectrometric N-glycan profiling. J Proteome Res 13:1167–1176. https://doi.org/10.1021/PR401043R

    Article  CAS  Google Scholar 

  24. Ma X, Dong W, Su Z et al (2016) Functional roles of sialylation in breast cancer progression through miR-26a/26b targeting ST8SIA4. Cell Death Dis 7. https://doi.org/10.1038/CDDIS.2016.427

  25. Lattová E, Skřičková J, Hausnerová J et al (2020) N-glycan profiling of lung adenocarcinoma in patients at different stages of disease. Mod Pathol 336(33):1146–1156. https://doi.org/10.1038/s41379-019-0441-3

    Article  CAS  Google Scholar 

  26. Holm M, Nummela P, Heiskanen A et al (2020) N-glycomic profiling of colorectal cancer according to tumor stage and location. PLoS One 15:e0234989. https://doi.org/10.1371/JOURNAL.PONE.0234989

    Article  CAS  Google Scholar 

  27. Dunphy WG, Rothman JE (1983) Compartmentation of asparagine-linked oligosaccharide processing in the Golgi apparatus. J Cell Biol 97:270–275. https://doi.org/10.1083/JCB.97.1.270

    Article  CAS  Google Scholar 

  28. Bieberich E (2014) Synthesis, processing, and function of N-glycans in N-glycoproteins. 47–70. https://doi.org/10.1007/978-1-4939-1154-7_3

  29. Bause E, Breuer W, Schweden J et al (1992) Effect of substrate structure on the activity of Man9-mannosidase from pig liver involved in N-linked oligosaccharide processing. Eur J Biochem 208:451–457. https://doi.org/10.1111/J.1432-1033.1992.TB17207.X

    Article  CAS  Google Scholar 

  30. Chen Y, Gershlick DC, Park SY, Bonifacino JS (2017) Segregation in the Golgi complex precedes export of endolysosomal proteins in distinct transport carriers. J Cell Biol 216:4141–4151. https://doi.org/10.1083/JCB.201707172/VIDEO-9

    Article  CAS  Google Scholar 

  31. Patterson GH, Hirschberg K, Polishchuk RS et al (2008) Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133:1055–1067. https://doi.org/10.1016/J.CELL.2008.04.044

    Article  CAS  Google Scholar 

  32. Losev E, Reinke CA, Jellen J et al (2006) Golgi maturation visualized in living yeast. Nature 4417096(441):1002–1006. https://doi.org/10.1038/nature04717

    Article  CAS  Google Scholar 

  33. Dunlop MH, Ernst AM, Schroeder LK et al (2017) Land-locked mammalian Golgi reveals cargo transport between stable cisternae. Nat Commun 81(8):1–14. https://doi.org/10.1038/s41467-017-00570-z

    Article  CAS  Google Scholar 

  34. Marjoram P, Molitor J, Plagnol V, Tavaré S (2003) Markov chain Monte Carlo without likelihoods. Proc Natl Acad Sci 100:15324–15328. https://doi.org/10.1073/PNAS.0306899100

    Article  CAS  Google Scholar 

  35. Wada Y, Azadi P, Costello CE, et al (2007) Comparison of the methods for profiling glycoprotein glycans--HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 17:411–422. https://doi.org/10.1093/GLYCOB/CWL086

  36. Zhang X, Vimalraj V, Patel M (2021) Routine analysis of N-Glycans using liquid chromatography coupled to routine mass detection. Methods Mol Biol 2271:205–219. https://doi.org/10.1007/978-1-0716-1241-5_15

    Article  CAS  Google Scholar 

  37. Zhong X, Chen Z, Snovida S et al (2015) Capillary electrophoresis-electrospray ionization-mass spectrometry for quantitative analysis of Glycans labeled with multiplex carbonyl-reactive tandem mass tags. Anal Chem 87:6527–6534. https://doi.org/10.1021/ACS.ANALCHEM.5B01835

    Article  CAS  Google Scholar 

  38. Krambeck FJ, Betenbaugh MJ (2005) A mathematical model of N-linked glycosylation. Biotechnol Bioeng 92:711–728. https://doi.org/10.1002/BIT.20645

    Article  CAS  Google Scholar 

  39. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. 7:457–472. https://doi.org/10.1214/SS/1177011136

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ungar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Morgan, R., West, B., Wood, A.J., Ungar, D. (2023). Modeling N-Glycosylation: A Systems Biology Approach for Evaluating Changes in the Steady-State Organization of Golgi-Resident Proteins. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2639-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2639-9_40

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation