Nucleus Reuniens: Circuitry, Function, and Dysfunction

  • Protocol
  • First Online:
Electrophysiological Recording Techniques

Part of the book series: Neuromethods ((NM,volume 192))

Abstract

The nucleus reuniens (RE) of the ventral midline thalamus is intimately connected with forebrain structures involved in higher-order functions and thus serves a critical role in those functions – both affective and cognitive behaviors. RE is strongly reciprocally linked with the hippocampus (HF) and medial prefrontal cortex (mPFC) and hence is pivotally positioned to affect these two structures – as well as their interactions. The HF distributes densely to the mPFC, but there are no return mPFC-HF projections; accordingly, RE is the main route of communication from the mPFC to the HF. Alterations of RE have been shown to disrupt various functions including working memory/spatial working memory (SWM), “executive functions,” and affective behaviors. Specifically, the inactivation of RE alters: (1) synchronous oscillations between the HF and mPFC and performance on SWM tasks; (2) executive functions such as attention, goal-directed behavior, and behavioral flexibility, mainly dependent on RE projections to the mPFC and orbital cortices; and (3) affective behavior, primarily fear and fear extinction, which have been associated with a RE-mediated disruption of mPFC actions on the hippocampus. RE cells in anesthetized and behaving animals exhibit a range of discharge characteristics consistent with the functional properties of RE. For instance, subpopulations of RE neurons (1) fire at significantly higher rates in active waking than in sleep with subsets discharging synchronously with the hippocampal theta rhythm; (2) display spatial properties – place cells, head direction cells, and border cells; and (3) exhibit “trajectory-dependent” activity; that is, RE discharge “predicts” directional choices (or intended movements) to thereby convey action plans from the mPFC to the HF for goal-directed behavior. Further, RE lesions significantly disrupt the stability of hippocampal place cells. Finally, alterations of RE have been linked to the CNS disorders, schizophrenia (SZ), and epilepsy. Regarding SZ, the disruption of RE produces abnormal HF-mPFC oscillations leading to an excessive release of dopamine and SZ-like effects including lapses of memory and cognition. Regarding epilepsy, RE is reportedly a primary conduit in the spread of HF-initiated seizure activity to other cortical regions in temporal lobe epilepsy. In summary, nucleus reuniens serves a critical role in mnemonic, executive, and affective functions, and alterations of RE would disrupt these functions possibly leading to CNS disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abela AR, Chudasama Y (2013) Dissociable contributions of the ventral hippocampus and orbitofrontal cortex to decision-making with a delayed or uncertain outcome. Eur J Neurosci 37:640–647

    Article  PubMed  Google Scholar 

  2. Abela AR, Dougherty SD, Fagen ED, Hill CJR, Chudasama Y (2012) Inhibitory control deficits in rats with ventral hippocampal lesions. Cereb Cortex 23:1396–1409

    Article  PubMed  Google Scholar 

  3. Adell A, Jiménez-Sánchez L, López-Gil X, Romón T (2012) Is the acute NMDA receptor hypofunction a valid model of schizophrenia? Schizophr Bull 38:9–14

    Article  PubMed  Google Scholar 

  4. Alelú-Paz R, Giménez-Amaya JM (2008) The mediodorsal thalamic nucleus and schizophrenia. J Psychiatry Neurosci 33:489–498

    PubMed  PubMed Central  Google Scholar 

  5. Amodeo LR, McMurray MS, Roitman JD (2017) Orbitofrontal cortex reflects changes in response–outcome contingencies during probabilistic reversal learning. Neuroscience 345:27–37

    Article  CAS  PubMed  Google Scholar 

  6. Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, Savic A, Krystal J, Pearlson GD, Glahn DC (2014) Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex 24:3116–3130

    Article  PubMed  Google Scholar 

  7. Anticevic A, Haut K, Murray J, Repovs G, Yang G, Diehl C, McEwen S, Bearden C, Addington J, Goodyear B, Cadenhead K, Mirzakhanian H, Cornblatt B, Olvet D, Mathalon D, McGlashan T, Perkins D, Belger A, Seidman L, Tsuang M, Van Erp T, Walker E, Hamann S, Woods S, Qiu M, Cannon T (2015) Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiat 72:882–891

    Article  Google Scholar 

  8. Aracri P, de Curtis M, Forcaia G, Uva L (2018) Enhanced thalamo-hippocampal synchronization during focal limbic seizures. Epilepsia 59:1774–1784

    Article  PubMed  Google Scholar 

  9. Arkhipov V, Kulesskaja N, Lebedev D (2008) Behavioral perseveration and impairment of long-term memory in rats after intrahippocampal injection of kainic acid in subconvulsive dose. Pharmacol Biochem Behav 88:299–305

    Article  CAS  PubMed  Google Scholar 

  10. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci 104:5163–5168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bannerman D, Rawlins J, McHugh S, Deacon R, Yee B, Bast T, Zhang W, Pothuizen H, Feldon J (2004) Regional dissociations within the hippocampus – memory and anxiety. Neurosci Biobehav Rev 28:273–283

    Article  CAS  PubMed  Google Scholar 

  12. Bari A, Robbins TW (2013) Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol 108:44–79

    Article  PubMed  Google Scholar 

  13. Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener SI (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron 66:921–936

    Article  CAS  PubMed  Google Scholar 

  14. Benedek K, Juhász C, Muzik O, Chugani DC, Chugani HT (2004) Metabolic changes of subcortical structures in intractable focal epilepsy. Epilepsia 45:1100–1105

    Article  PubMed  Google Scholar 

  15. Bentivoglio M, Balercia G, Kruger L (1991) The specificity of the nonspecific thalamus: the midline nuclei. Prog Brain Res 87:53–80

    Article  CAS  PubMed  Google Scholar 

  16. Berendse HW, Groenewegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42:73–102

    Article  CAS  PubMed  Google Scholar 

  17. Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299:187–228

    Article  CAS  PubMed  Google Scholar 

  18. Berg EA (1948) A simple objective technique for measuring flexibility in thinking. J Gen Psychol 39:15–22

    Article  CAS  PubMed  Google Scholar 

  19. Bernasconi N, Bernasconi A, Caramanos Z, Antel SB, Andermann F, Arnold DL (2003) Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region. Brain 126:462–469

    Article  CAS  PubMed  Google Scholar 

  20. Bernhardt BC, Hong S, Bernasconi A, Bernasconi N (2013) Imaging structural and functional brain networks in temporal lobe epilepsy. Front Hum Neurosci 7:624

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bertram EH, Zhang DX (1999) Thalamic excitation of hippocampal CA1 neurons: a comparison with the effects of CA3 stimulation. Neuroscience 92:15–26

    Article  CAS  PubMed  Google Scholar 

  22. Bertram EH, Mangan PS, Zhang D, Scott CA, Williamson JM (2001) The midline thalamus: alterations and a potential role in limbic epilepsy. Epilepsia 42:967–978

    Article  CAS  PubMed  Google Scholar 

  23. Bertram EH, Zhang DX, Mangan P, Fountain N, Rempe D (1998) Functional anatomy of limbic epilepsy: a proposal for central synchronization of a diffusely hyperexcitable network. Epilepsy Res 32:194–205

    Article  CAS  PubMed  Google Scholar 

  24. Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bissonette GB, Martins GJ, Franz TM, Harper ES, Schoenbaum G, Powell EM (2008) Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J Neurosci 28:11124–11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bokor H, Csáki Á, Kocsis K, Kiss J (2002) Cellular architecture of the nucleus reuniens thalami and its putative aspartatergic/glutamatergic projection to the hippocampus and medial septum in the rat. Eur J Neurosci 16:1227–1239

    Article  PubMed  Google Scholar 

  27. Bonilha L, Rorden C, Castellano G, Cendes F, Li LM (2005) Voxel-based morphometry of the thalamus in patients with refractory medial temporal lobe epilepsy. NeuroImage 25:1016–1021

    Article  PubMed  Google Scholar 

  28. Boulougouris V, Dalley JW, Robbins TW (2007) Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res 179:219–228

    Article  PubMed  Google Scholar 

  29. Boulougouris V, Glennon JC, Robbins TW (2008) Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 33:2007–2019

    Article  CAS  PubMed  Google Scholar 

  30. Boulougouris V, Robbins TW (2010) Enhancement of spatial reversal learning by 5-HT2C receptor antagonism is neuroanatomically specific. J Neurosci 30:930–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boutros NN, Arfken C, Galderisi S, Warrick J, Pratt G, Iacono W (2008) The status of spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophr Res 99:225–237

    Article  PubMed  Google Scholar 

  32. Cain DP, Boon F, Corcoran ME (2006) Thalamic and hippocampal mechanisms in spatial navigation: a dissociation between brain mechanisms for learning how versus learning where to navigate. Behav Brain Res 170:241–256

    Article  PubMed  Google Scholar 

  33. Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comp Neurol 324:180–194

    Article  CAS  PubMed  Google Scholar 

  34. Canteras NS, Simerly RB, Swanson LW (1995) Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol 360:213–245

    Article  CAS  PubMed  Google Scholar 

  35. Canteras NS, Goto M (1999) Connections of the precommissural nucleus. J Comp Neurol 408:23–45

    Article  CAS  PubMed  Google Scholar 

  36. Carr DB, Sesack SR (1996) Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol 369:1–15

    Article  CAS  PubMed  Google Scholar 

  37. Carter ME, Soden ME, Zweifel LS, Palmiter RD (2013) Genetic identification of a neural circuit that suppresses appetite. Nature 503:111–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cassaday HJ, Nelson AJD, Pezze MA (2014) From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: some methodological considerations. Front Syst Neurosci 360:213–245

    Google Scholar 

  39. Cassel JC, Pereira de Vasconcelos A, Loureiro M, Cholvin T, Dalrymple-Alford JC, Vertes RP (2013) The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog Neurobiol 111:34–52

    Article  PubMed  PubMed Central  Google Scholar 

  40. Castañé A, Santana N, Artigas F (2015) PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments. Psychopharmacology (Berl) 232:4085–4097

    Article  CAS  Google Scholar 

  41. Çavdar S, Onat FY, Çakmak YÖ, Yananli HR, Gülçebi M, Aker R (2008) The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat. J Anat 212:249–256

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cho KIK, Kwak YB, Hwang WJ, Lee J, Kim M, Lee TY, Kwon JS (2018) Thalamo-cortical system involving higher-order nuclei in patients with first-episode psychosis. BMB Rep 51:427–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cholvin T, Hok V, Giorgi L, Chaillan FA, Poucet B (2018) Ventral midline thalamus is necessary for hippocampal place field stability and cell firing modulation. J Neurosci 38:158–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cholvin T, Loureiro M, Cassel R, Cosquer B, Geiger K, De Sa ND, Raingard H, Robelin L, Kelche C, Pereira de Vasconcelos A, Cassel JC (2013) The ventral midline thalamus contributes to strategy shifting in a memory task requiring both prefrontal cortical and hippocampal functions. J Neurosci 33:8772–8783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chudasama Y (2011) Animal models of prefrontal-executive function. Behav Neurosci 125:327–343

    Article  PubMed  Google Scholar 

  46. Chudasama Y, Doobay VM, Liu Y (2012) Hippocampal-prefrontal cortical circuit mediates inhibitory response control in the rat. J Neurosci 32:10915–10924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chudasama Y, Passetti F, Rhodes SEV, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146:105–119

    Article  CAS  PubMed  Google Scholar 

  48. Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to Pavlovian autosha** and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23:8771–8780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Churchwell JC, Kesner P (2011) Hippocampal-prefrontal dynamics in spatial working memory: interactions and independent parallel processing. Behav Brain Res 225:389–395

    Article  PubMed  PubMed Central  Google Scholar 

  50. Churchwell J, Morri AM, Musso ND, Kesner RP (2010) Prefrontal and hippocampal contributions to encoding and retrieval of spatial memory. Neurobiol Learn Mem 93:415–421

    Article  PubMed  Google Scholar 

  51. Clark L, Cools R, Robbins TW (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55:41–53

    Article  CAS  PubMed  Google Scholar 

  52. Clementz BA, Sponheim SR, Iacono WG, Beiser M (1994) Resting EEG in first-episode schizophrenia patients, bipolar psychosis patients, and their first-degree relatives. Psychophysiology 31:486–494

    Article  CAS  PubMed  Google Scholar 

  53. Cohen BM, Cherkerzian S, Ma J, Ye N, Wager C, Lange N (2003) Cells in midline thalamus, central amygdala, and nucleus accumbens responding specifically to antipsychotic drugs. Psychopharmacology (Berl) 167:403–410

    Article  CAS  Google Scholar 

  54. Cohen BM, Wan W, Froimowitz MP, Ennulat DJ, Cherkerzian S, Konieczna H (1998) Activation of midline thalamic nuclei by antipsychotic drugs. Psychopharmacology (Berl) 135:37–43

    Article  CAS  Google Scholar 

  55. Colgin LL (2011) Oscillations and hippocampal-prefrontal synchrony. Curr Opin Neurobiol 2:467–474

    Article  CAS  Google Scholar 

  56. Cousijn H, Tunbridge E, Rolinski M, Wallis G, Colclough G, Woolrich M, Nobre A, Harrison P (2015) Modulation of hippocampal theta and hippocampal-prefrontal cortex function by a schizophrenia risk gene. Hum Brain Mapp 36:2387–2395

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cullinan WE, Záborszky L (1991) Organization of ascending hypothalamic projections to the rostral forebrain with special reference to the innervation of cholinergic projection neurons. J Comp Neurol 306:631–667

    Article  CAS  PubMed  Google Scholar 

  58. Dabrowska N, Joshi S, Williamson J, Lewczuk E, Lu Y, Oberoi S, Brodovskaya A, Kapur J (2019) Parallel pathways of seizure generalization. Brain 142:2336–2351

    PubMed  PubMed Central  Google Scholar 

  59. Dalland T (1970) Response and stimulus perseveration in rats with septal and dorsal hippocampal lesions. J Comp Physiol Psychol 71:114–118

    Article  CAS  PubMed  Google Scholar 

  60. Dalland T (1976) Response perseveration of rats with dorsal hippocampal lesions. Behav Biol 17:473–484

    Article  CAS  PubMed  Google Scholar 

  61. Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  CAS  PubMed  Google Scholar 

  62. Dawson N, Morris BJ, Pratt JA (2013) Subanaesthetic ketamine treatment alters prefrontal cortex connectivity with thalamus and ascending subcortical systems. Schizophr Bull 39:366–377

    Article  PubMed  Google Scholar 

  63. De Bruin JPC, Van Oyen HGM, Van De Poll N (1983) Behavioural changes following lesions of the orbital prefrontal cortex in male rats. Behav Brain Res 10:209–232

    Article  PubMed  Google Scholar 

  64. Deacon RMJ, Bannerman DM, Nicholas J, Rawlins P (2001) Conditional discriminations based on external and internal cues in rats with cytotoxic hippocampal lesions. Behav Neurosci 115:43–57

    Article  CAS  PubMed  Google Scholar 

  65. DeCarli C, Hatta J, Fazilat S, Fazilat S, Gaillard WD, Theodore WH (1998) Extratemporal atrophy in patients with complex partial seizures of left temporal origin. Ann Neurol 43:41–45

    Article  CAS  PubMed  Google Scholar 

  66. Dickerson DD, Bilkey DK (2013) Aberrant neural synchrony in the maternal immune activation model: using translatable measures to explore targeted interventions. Front Behav Neurosci 7:1–12

    Article  Google Scholar 

  67. Dickerson DD, Restieaux AM, Bilkey DK (2012) Clozapine administration ameliorates disrupted long-range synchrony in a neurodevelopmental animal model of schizophrenia. Schizophr Res 135:112–115

    Article  PubMed  Google Scholar 

  68. Dickerson DD, Wolff AR, Bilkey DK (2010) Abnormal long-range neural synchrony in a maternal immune activation animal model of schizophrenia. J Neurosci 30:12424–12431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dolleman-van der Weel MJ, Griffin AL, Ito HT, Shapiro ML, Witter MP, Vertes RP, Allen TA (2019) The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior. Learn Mem 26:191–205

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dolleman-Van der Weel MJ, Lopes da Silva FH, Witter MP (1997) Nucleus reuniens thalami modulates activity in hippocampal field CA1 through excitatory and inhibitory mechanisms. J Neurosci 17:5640–5650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dolleman-Van der Weel MJ, Morris RGM, Witter MP (2009) Neurotoxic lesions of the thalamic reuniens or mediodorsal nucleus in rats affect non-mnemonic aspects of watermaze learning. Brain Struct Funct 213:329–342

    Article  PubMed  Google Scholar 

  72. Dolleman-van der Weel MJ, Witter MP (1996) Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J Comp Neurol 364:637–650

    Article  CAS  PubMed  Google Scholar 

  73. Dreifuss S, Vingerhoets FJG, Lazeyras F, Gonzales Andino S, Spinelli L, Delavelle J, Seeck M (2001) Volumetric measurements of subcortical nuclei in patients with temporal lobe epilepsy. Neurology 57:1636–1641

    Article  CAS  PubMed  Google Scholar 

  74. Drexel M, Preidt AP, Kirchmair E, Sperk G (2011) Parvalbumin interneurons and calretinin fibers arising from the thalamic nucleus reuniens degenerate in the subiculum after kainic acid-induced seizures. Neuroscience 189:316–329

    Article  CAS  PubMed  Google Scholar 

  75. Duan AR, Varela C, Zhang Y, Shen Y, **ong L, Wilson MA, Lisman J (2015) Delta frequency optogenetic stimulation of the thalamic nucleus reuniens is sufficient to produce working memory deficits: relevance to schizophrenia. Biol Psychiatry 77:1098–1107

    Article  PubMed  PubMed Central  Google Scholar 

  76. Feierstein CE, Quirk MC, Uchida N, Sosulski DL, Mainen ZF (2006) Representation of spatial goals in rat orbitofrontal cortex. Neuron 51:495–507

    Article  CAS  PubMed  Google Scholar 

  77. Fenster RJ, Lebois LAM, Ressler KJ, Suh J (2018) Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci 19:535–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ferino F, Thierry AM, Glowinski J (1987) Anatomical and electrophysiological evidence for a direct projection from Ammon’s horn to the medial prefrontal cortex in the rat. Exp Brain Res 65:421–426

    Article  CAS  PubMed  Google Scholar 

  79. Ferraris M, Ghestem A, Vicente AF, Nallet-Khosrofian L, Bernard C, Quilichini PP (2018) The nucleus reuniens controls long-range hippocampo–prefrontal gamma synchronization during slow oscillations. J Neurosci 38:3026–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Flaisher-Grinberg S, Klavir O, Joel D (2008) The role of 5-HT2A and 5-HT2C receptors in the signal attenuation rat model of obsessive-compulsive disorder. Int J Neuropsychopharmacol 11:811–825

    Article  CAS  PubMed  Google Scholar 

  81. Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Giraldo-Chica M, Woodward ND (2017) Review of thalamocortical resting-state fMRI studies in schizophrenia. Schizophr Res 180:58–63

    Article  PubMed  Google Scholar 

  83. Giustino TF, Maren S (2015) The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front Behav Neurosci 9:1–20

    Article  Google Scholar 

  84. Godsil BP, Kiss JP, Spedding M, Jay TM (2013) The hippocampal-prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol 23:1165–1181

    Article  CAS  PubMed  Google Scholar 

  85. Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485

    Article  CAS  PubMed  Google Scholar 

  86. Gordon JA (2011) Oscillations and hippocampal-prefrontal synchrony. Curr Opin Neurobiol 21:486–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Grace AA, Gomes FV (2019) The circuitry of dopamine system regulation and its disruption in schizophrenia: insights into treatment and prevention. Schizophr Bull 45:148–157

    Article  PubMed  Google Scholar 

  88. Griffin AL (2015) Role of the thalamic nucleus reunions in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory. Front Syst Neurosci 9:1–8

    Article  Google Scholar 

  89. Groenewegen HJ, Berendse HW (1994) The specificity of the “nonspecific” midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57

    Article  CAS  PubMed  Google Scholar 

  90. Groenewegen HJ, Witter MP (2004) Thalamus. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, San Diego CA, pp 407–453

    Chapter  Google Scholar 

  91. Guye M, Régis J, Tamura M, Wendling F, Gonigal AM, Chauvel P, Bartolomei F (2006) The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 129:1917–1928

    Article  PubMed  Google Scholar 

  92. Hallock HL, Arreola AC, Shaw CL, Griffin AL (2013) Dissociable roles of the dorsal striatum and dorsal hippocampus in conditional discrimination and spatial alternation T-maze tasks. Neurobiol Learn Mem 100:108–116

    Article  PubMed  Google Scholar 

  93. Hallock HL, Wang A, Griffin AL (2016) Ventral midline thalamus is critical for hippocampal-prefrontal synchrony and spatial working memory. J Neurosci 36:8372–8389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hallock HL, Wang A, Shaw CL, Griffin AL (2013) Transient inactivation of the thalamic nucleus reuniens and rhomboid nucleus produces deficits of a working-memory dependent tactile-visual conditional discrimination task. Behav Neurosci 127:860–866

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hembrook JR, Mair RG (2011) Lesions of reuniens and rhomboid thalamic nuclei impair radial maze win-shift performance. Hippocampus 21:815–826

    PubMed  Google Scholar 

  96. Hembrook JR, Onos KD, Mair RG (2012) Inactivation of ventral midline thalamus produces selective spatial delayed conditional discrimination impairment in the rat. Hippocampus 22:853–860

    Article  CAS  PubMed  Google Scholar 

  97. Herkenham M (1978) The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol 177:589–609

    Article  CAS  PubMed  Google Scholar 

  98. Hirayasu Y, Wada JA (1992) Convulsive seizures in rats induced by N-methyl-d-aspartate injection into the massa intermedia. Brain Res 577:36–40

    Article  CAS  PubMed  Google Scholar 

  99. Hiyoshi T, Wada JA (1988) Midline thalamic lesion and feline amygdaloid kindling. I. Effect of lesion placement prior to kindling. Electroencephalogr Clin Neurophysiol 70:325–338

    Article  CAS  PubMed  Google Scholar 

  100. Hiyoshi T, Wada JA (1988) Midline thalamic lesion and feline amygdaloid kindling. II. Effect of lesion placement upon completion of primary site kindling. Electroencephalogr Clin Neurophysiol 70:339–349

    Article  CAS  PubMed  Google Scholar 

  101. Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149–179

    Article  PubMed  Google Scholar 

  102. Hoover WB, Vertes RP (2011) Projections of the medial orbital and ventral orbital cortex in the rat. J Comp Neurol 519:3766–3801

    Article  PubMed  Google Scholar 

  103. Hoover WB, Vertes RP (2012) Collateral projections from nucleus reuniens of thalamus to hippocampus and medial prefrontal cortex in the rat: a single and double retrograde fluorescent labeling study. Brain Struct Funct 217:191–209

    Article  PubMed  Google Scholar 

  104. Hornak J, O’Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR, Polkey CE (2004) Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 16:463–478

    Article  CAS  PubMed  Google Scholar 

  105. Horst NK, Laubach M (2009) The role of rat dorsomedial prefrontal cortex in spatial working memory. Neuroscience 164:444–456

    Article  CAS  PubMed  Google Scholar 

  106. Hunt MJ, Kopell NJ, Traub RD, Whittington MA (2017) Aberrant network activity in schizophrenia. Trends Neurosci 40:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308:249–276

    Article  CAS  PubMed  Google Scholar 

  108. Hyman JM, Zilli EA, Paley AM, Hasselmo ME (2010) Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates. Front Integr Neurosci 4:1–13

    Google Scholar 

  109. Hyman JM, Hasselmo ME, Seamans JK (2011) What is the functional relevance of prefrontal cortex entrainment to hippocampal theta rhythms? Front Neurosci 5:1–13

    Article  Google Scholar 

  110. Ito HT, Moser EI, Moser MB (2018) Supramammillary nucleus modulates spike-time coordination in the prefrontal-thalamo-hippocampal circuit during navigation. Neuron 99:576–587

    Article  CAS  PubMed  Google Scholar 

  111. Ito HT, Zhang SJ, Witter MP, Moser EI, Moser MB (2015) A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 522:50–55

    Article  CAS  PubMed  Google Scholar 

  112. Izaki Y, Takita M, Akema T (2008) Specific role of the posterior dorsal hippocampus-prefrontal cortex in short-term working memory. Eur J Neurosci 27:3029–3034

    Article  PubMed  Google Scholar 

  113. Izquierdo A (2017) Functional heterogeneity within rat orbitofrontal cortex in reward learning and decision making. J Neurosci 37:10529–10540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Izquierdo A, Jentsch JD (2012) Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology (Berl) 219:607–620

    Article  CAS  Google Scholar 

  115. Izquierdo A, Suda RK, Murray EA (2004) Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J Neurosci 24:7540–7548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jankowski MM, Nurul Islam M, Wright NF, Vann SD, Erichsen JT, Aggleton JP, O'Mara SM (2014) Nucleus reuniens of the thalamus contains head direction cells. eLife 3:e03075

    Article  PubMed Central  Google Scholar 

  117. Jankowski MM, Passecker J, Islam N, Vann S, Erichsen JT, Aggleton JP, O’Mara SM (2015) Evidence for spatially-responsive neurons in the rostral thalamus. Front Behav Neurosci 9:256

    Article  PubMed  PubMed Central  Google Scholar 

  118. Jasmin L, Granato A, Ohara PT (2004) Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 468:425–440

    Article  PubMed  Google Scholar 

  119. Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313:574–586

    Article  CAS  PubMed  Google Scholar 

  120. ** J, Maren S (2015) Prefrontal-hippocampal interactions in memory and emotion. Front Syst Neurosci 9:1–8

    Article  CAS  Google Scholar 

  121. Jones MW, Wilson MA (2005) Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythm. Hippocampus 15:867–873

    Article  PubMed  Google Scholar 

  122. Jones MW, Wilson MA (2005) Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol 3:1–13

    Article  CAS  Google Scholar 

  123. Juhász C, Chugani D, Muzik O, Watson C, Shah J, Shah A, Chugani H (2000) Relationship between EEG and positron emission tomography abnormalities in clinical epilepsy. J Clin Neurophysiol 17:29–42

    Article  PubMed  Google Scholar 

  124. Kafetzopoulos V, Kokras N, Sotiropoulos I, Oliveira J, Leite-Almeida H, Vasalou A, Sardinha V, Papadopoulou-Daifoti Z, Almeida O, Antoniou K, Sousa N, Dalla C (2018) The nucleus reuniens: a key node in the neurocircuitry of stress and depression. Mol Psychiatry 23:579–586

    Article  CAS  PubMed  Google Scholar 

  125. Kehagia AA, Murray GK, Robbins TW (2010) Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation. Curr Opin Neurobiol 20:199–204

    Article  CAS  PubMed  Google Scholar 

  126. Kentros CG, Agnihotri NT, Streater S, Hawkins RD, Kandel ER (2004) Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42:283–295

    Article  CAS  PubMed  Google Scholar 

  127. Kesner RP (2000) Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. Psychobiology 28:219–228

    Article  Google Scholar 

  128. Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96:417–431

    Article  PubMed  Google Scholar 

  129. Khan N, Leenders KL, Hajek M, Maguire P, Missimer J, Wieser HG (1997) Thalamic glucose metabolism in temporal lobe epilepsy measured with 18F-FDG positron emission tomography (PET). Epilepsy Res 28:233–243

    Article  CAS  PubMed  Google Scholar 

  130. Kiss T, Hoffmann WE, Scott L, Kawabe TT, Milici AJ, Nilsen EA, Hajós M (2011) Role of thalamic projection in NMDA receptor-induced disruption of cortical slow oscillation and short-term plasticity. Front Psych 2:1–12

    Google Scholar 

  131. Kocsis B, Brown R, McCarley RW, Hajos M (2013) Impact of ketamine on neuronal network dynamics: translational modeling of schizophrenia-relevant deficits. CNS Neurosci Ther 19:437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kocsis B, Vertes RP (1997) Phase relations of rhythmic neuronal firing in the supramammillary nucleus and mammillary body to the hippocampal theta activity in urethane anesthetized rats. Hippocampus 7:204–214

    Article  CAS  PubMed  Google Scholar 

  133. Kocsis B, Vertes R (1994) Characterization of neurons of the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat. J Neurosci 14:7040–7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kolb B (1974) Double dissociation of spatial and perseverative impairments following prefrontal lesions in rats. J Comp Physiol Psychol 87:772–780

    Article  CAS  PubMed  Google Scholar 

  135. Kosaki Y, Watanabe S (2012) Dissociable roles of the medial prefrontal cortex, the anterior cingulate cortex, and the hippocampus in behavioural flexibility revealed by serial reversal of three-choice discrimination in rats. Behav Brain Res 227:81–90

    Article  PubMed  Google Scholar 

  136. Krout KE, Belzer RE, Loewy AD (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448:53–101

    Article  PubMed  Google Scholar 

  137. Kupferschmidt DA, Gordon JA (2018) The dynamics of disordered dialogue: prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain Neurosci Adv 2:1–15

    Article  Google Scholar 

  138. Kyd RJ, Bilkey DK (2003) Prefrontal cortex lesions modify the spatial properties of hippocampal place cells. Cereb Cortex 13:444–451

    Article  PubMed  Google Scholar 

  139. Lara-Vásquez A, Espinosa N, Durán E, Stockle M, Fuentealba P (2016) Midline thalamic neurons are differentially engaged during hippocampus network oscillations. Sci Rep 6:1–16

    Article  CAS  Google Scholar 

  140. Laroche S, Davis S, Jay TM (2000) Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation. Hippocampus 10:438–446

    Article  CAS  PubMed  Google Scholar 

  141. Layfield DM, Patel M, Hallock H, Griffin AL (2015) Inactivation of the nucleus reuniens/rhomboid causes a delay-dependent impairment of spatial working memory. Neurobiol Learn Mem 125:163–167

    Article  PubMed  PubMed Central  Google Scholar 

  142. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  143. Lee H, Dvorak D, Fenton AA (2014) Targeting neural synchrony deficits is sufficient to improve cognition in a schizophrenia-related neurodevelopmental model. Front Psych 5:1–17

    Google Scholar 

  144. Lee H, Dvorak D, Kao HY, Duffyáine M, Scharfman HE, Fenton AA (2012) Early cognitive experience prevents adult deficits in a neurodevelopmental schizophrenia model. Neuron 75:714–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lee I, Kesner RP (2003) Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory. J Neurosci 23:1517–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Linley SB, Gallo MM, Vertes RP (2016) Lesions of the ventral midline thalamus produce deficits in reversal learning and attention on an odor texture set shifting task. Brain Res 1649:110–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Linley SB, Rojas AKP, Gorora ME, Schreiber ME, Viena TD, Allen TA, Vertes RP (2018) Chemogenetic inactivation of nucleus reuniens impairs behavioral flexibility in an odor texture attentional set shifting task. Program No. 082.08. Society for Neuroscience Meeting, San Diego

    Google Scholar 

  148. Lipska BK, Weinberger DR (1993) Delayed effects of neonatal hippocampal damage on haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Dev Brain Res 75:213–222

    Article  CAS  Google Scholar 

  149. Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9:67–75

    Article  CAS  PubMed  Google Scholar 

  150. Lisman J (2016) Low-frequency brain oscillations in schizophrenia. JAMA Psychiat 73:298–299

    Article  Google Scholar 

  151. Lisman JE, Pi HJ, Zhang Y, Otmakhova NA (2010) A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia. Biol Psychiaty 68:17–24

    Article  Google Scholar 

  152. Lisman JE (2012) Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Curr Opin Neurobiol 22:537–544

    Article  CAS  PubMed  Google Scholar 

  153. Liu J, Lee HJ, Weitz AJ, Fang Z, Lin P, Choy M, Fisher R, Pinskiy V, Tolpygo A, Mitra P, Schiff N (2015) Frequency-selective control of cortical and subcortical networks by central thalamus. eLife 4:e09215

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lopresto D, Schipper P, Homberg JR (2016) Neural circuits and mechanisms involved in fear generalization: implications for the pathophysiology and treatment of posttraumatic stress disorder. Neurosci Biobehav Rev 60:31–42

    Article  PubMed  Google Scholar 

  155. Loureiro M, Cholvin T, Lopez J, Merienne N, Latreche A, Cosquer B, Geiger K, Kelche C, Cassel JC, de Vasconcelos AP (2012) The ventral midline thalamus (reuniens and rhomboid nuclei) contributes to the persistence of spatial memory in rats. J Neurosci 32:9947–9959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mair R, Burk J, Porter MC (1998) Lesions of the frontal cortex, hippocampus, and intralaminar thalamic nuclei have distinct effects on remembering in rats. Behav Neurosci 112:772–792

    Article  CAS  PubMed  Google Scholar 

  157. Maisson DJN, Gemzik ZM, Griffin AL (2018) Optogenetic suppression of the nucleus reuniens selectively impairs encoding during spatial working memory. Neurobiol Learn Mem 155:78–85

    Article  PubMed  Google Scholar 

  158. Marek R, Sun Y, Sah P (2019) Neural circuits for a top-down control of fear and extinction. Psychopharmacology (Berl) 236:313–320

    Article  CAS  Google Scholar 

  159. Marenco S, Stein JL, Savostyanova AA, Sambataro F, Tan HY, Goldman AL, Verchinski BA, Barnett AS, Dickinson D, Apud JA, Callicott JH (2012) Investigation of anatomical thalamo-cortical connectivity and FMRI activation in schizophrenia. Neuropsychopharmacology 37:499–507

    Article  PubMed  Google Scholar 

  160. McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    Article  PubMed  Google Scholar 

  161. McDonald RJ, White NM (2013) A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav Neurosci 127:835–853

    Article  PubMed  Google Scholar 

  162. McKenna JT, Vertes RP (2004) Afferent projections to nucleus reuniens of the thalamus. J Comp Neurol 480:115–142

    Article  PubMed  Google Scholar 

  163. Milad MR, Quirk GJ (2012) Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol 63:129–151

    Article  PubMed  PubMed Central  Google Scholar 

  164. Moghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37:4–15

    Article  CAS  PubMed  Google Scholar 

  165. Moore RY, Weis R, Moga MM (2000) Efferent projections of the intergeniculate leaflet and the ventral lateral geniculate nucleus in the rat. J Comp Neurol 420:398–418

    Article  CAS  PubMed  Google Scholar 

  166. Morales GJ, Ramcharan EJ, Sundararaman N, Morgera SD, Vertes RP (2007) Analysis of the actions of nucleus reuniens and the entorhinal cortex on EEG and evoked population behavior of the hippocampus. Conf Proc IEEE Eng Med Biol Soc 2007:2480–2484

    Google Scholar 

  167. Muzzio IA, Kentros C, Kandel E (2009) What is remembered? Role of attention on the encoding and retrieval of hippocampal representations. J Physiol 587:2837–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Muzzio IA, Levita L, Kulkarni J, Monaco J, Kentros C, Stead M, Abbott LF, Kandel ER (2009) Attention enhances the retrieval and stability of visuospatial and olfactory representations in the dorsal hippocampus. PLoS Biol 7:e1000140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Naber PA, Witter MP (1998) Subicular efferents are organized mostly as parallel projections: a double-labeling, retrograde-tracing study in the rat. J Comp Neurol 393:284–297

    Article  CAS  PubMed  Google Scholar 

  170. Nagalski A, Puelles L, Dabrowski M, Wegierski T, Kuznicki J, Wisniewska MB (2016) Molecular anatomy of the thalamic complex and the underlying transcription factors. Brain Struct Funct 221:2493–2510

    Article  CAS  PubMed  Google Scholar 

  171. Natsume J, Bernasconi N, Andermann F, Bernasconi A (2003) MRI volumetry of the thalamus in temporal, extratemporal, and idiopathic generalized epilepsy. Neurology 60:1296–1300

    Article  PubMed  Google Scholar 

  172. Newberg AB, Alavin A, Berlin J, Mozley PD, O’Connor M, Sperling M (2000) Ipsilateral and contralateral thalamic hypometabolism as a predictor of outcome after temporal lobectomy for seizures. J Nucl Med 41:1964–1968

    CAS  PubMed  Google Scholar 

  173. O’Neill PK, Gordon JA, Sigurdsson T (2013) Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. J Neurosci 33:14211–14224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Oddie SD, Bland BH, Colom LV, Vertes RP (1994) The midline posterior hypothalamic region comprises a critical part of the ascending brainstem hippocampal synchronizing pathway. Hippocampus 4:454–473

    Article  CAS  PubMed  Google Scholar 

  175. Ohtake T, Yamada H (1989) Efferent connections of the nucleus reuniens and the rhomboid nucleus in the rat: an anterograde PHA-L tracing study. Neurosci Res 6:556–568

    Article  CAS  PubMed  Google Scholar 

  176. Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW (1991) Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 29:993–1006

    Article  CAS  PubMed  Google Scholar 

  177. Owens M (2005) Afferent projections to rhomboid nucleus of the thalamus. Florida Atlantic University. Master’s thesis

    Google Scholar 

  178. Paredes D, Morilak DA (2019) A rodent model of exposure therapy: the use of fear extinction as a therapeutic intervention for PTSD. Front Behav Neurosci 13:1–12

    Article  CAS  Google Scholar 

  179. Parnaudeau S, O’Neill PK, Bolkan SS, Ward RD, Abbas AI, Roth BL, Balsam PD, Gordon JA, Kellendonk C (2013) Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77:1151–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Patterson PH (2002) Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr Opin Neurobiol 12:115–118

    Article  CAS  PubMed  Google Scholar 

  181. Peng ZC, Grassi-Zucconi G, Bentivoglio M (1995) Fos-related protein expression in the midline paraventricular nucleus of the rat thalamus: basal oscillation and relationship with limbic efferents. Exp Brain Res 104:21–29

    Article  CAS  PubMed  Google Scholar 

  182. Pergola G, Selvaggi P, Trizio S, Bertolino A, Blasi G (2015) The role of the thalamus in schizophrenia from a neuroimaging perspective. Neurosci Biobehav Rev 54:57–75

    Article  PubMed  Google Scholar 

  183. Porter MC, Burk JA, Mair RG (2000) A comparison of the effects of hippocampal or prefrontal cortical lesions on three versions of delayed non-matching-to-sample based on positional or spatial cues. Behav Brain Res 109:69–81

    Article  CAS  PubMed  Google Scholar 

  184. Porter MC, Mair RG (1997) The effects of frontal cortical lesions on remembering depends on the procedural demands of tasks performed in the radial arm maze. Behav Brain Res 87:115–125

    Article  CAS  PubMed  Google Scholar 

  185. Prasad JA, Chudasama Y (2013) Viral tracing identifies parallel disynaptic pathways to the hippocampus. J Neurosci 33:8494–8503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Prasad JA, MacGregor EM, Chudasama Y (2013) Lesions of the thalamic reuniens cause impulsive but not compulsive responses. Brain Struct Funct 218:85–96

    Article  PubMed  Google Scholar 

  187. Pratt J, Dawson N, Morris BJ, Grent-’t-Jong T, Roux F, Uhlhaas PJ (2017) Thalamo-cortical communication, glutamatergic neurotransmission and neural oscillations: a unique window into the origins of ScZ? Schizophr Res 180:4–12

    Article  PubMed  Google Scholar 

  188. Preston AR, Eichenbaum H (2013) Interplay of hippocampus and prefrontal cortex in memory. Curr Biol 23:R763–R773

    Article  CAS  Google Scholar 

  189. Price JL (1995) Thalamus. In: Paxinos G (ed) The rat nervous system, 2nd edn. Elsevier Academic Press, San Diego, CA, pp 629–648

    Google Scholar 

  190. Ramanathan KR, ** J, Giustino TF, Payne MR, Maren S (2018) Prefrontal projections to the thalamic nucleus reuniens mediate fear extinction. Nat Commun 9:1–12

    Article  CAS  Google Scholar 

  191. Ramanathan KR, Maren S (2019) Nucleus reuniens mediates the extinction of contextual fear conditioning. Behav Brain Res 374:112–114

    Article  CAS  Google Scholar 

  192. Ramanathan KR, Ressler RL, ** J, Maren S (2018) Nucleus reuniens is required for encoding and retrieving precise, hippocampal-dependent contextual fear memories in rats. J Neurosci 38:9925–9933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Rasetti R, Sambataro F, Chen Q, Callicott JH, Mattay VS, Weinberger DR (2011) Altered cortical network dynamics: a potential intermediate phenotype for schizophrenia and association with ZNF804A. Arch Gen Psychiatry 68:1207–1217

    Article  PubMed  Google Scholar 

  194. Reep RL, Corwin JV, King V (1996) Neuronal connections of orbital cortex in rats: topography of cortical and thalamic afferents. Exp Brain Res 111:215–232

    Article  CAS  PubMed  Google Scholar 

  195. Remondes M, Wilson MA (2013) Cingulate-hippocampus coherence and trajectory coding in a sequential choice task. Neuron 80:1277–1289

    Article  CAS  PubMed  Google Scholar 

  196. Ren S, Wang Y, Yue F, Cheng X, Dang R, Qiao Q, Sun X, Li X, Jiang Q, Yao J, Qin H, Wang G, Liao X, Gao D, **a J, Zhang J, Hu B, Yan J, Wang Y, Xu M, Han Y, Tang X, Chen X, He C, Hu Z (2018) The paraventricular thalamus is a critical thalamic area for wakefulness. Science 362:429–434

    Article  CAS  PubMed  Google Scholar 

  197. Risold PY, Canteras NS, Swanson LW (1994) Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348:1–40

    Article  CAS  PubMed  Google Scholar 

  198. Risold PY, Thompson RH, Swanson LW (1997) The structural organization of connections between hypothalamus and cerebral cortex. Brain Res Rev 24:197–254

    Article  CAS  PubMed  Google Scholar 

  199. Romeo A, Issa Roach AT, Toth E, Chaitanya G, Ilyas A, Riley KO, Pati S (2019) Early ictal recruitment of midline thalamus in mesial temporal lobe epilepsy. Ann Clin Transl Neurol 6:1552–1558

    Article  PubMed  PubMed Central  Google Scholar 

  200. Rosen AM, Spellman T, Gordon JA (2015) Electrophysiological endophenotypes in rodent models of schizophrenia and psychosis. Biol Psychiatry 77:1041–1049

    Article  PubMed  PubMed Central  Google Scholar 

  201. Sakurai M, Kurokawa H, Shimada A, Nakamura K, Miyata H, Morita T (2015) Excitatory amino acid transporter 2 downregulation correlates with thalamic neuronal death following kainic acid-induced status epilepticus in rat. Neuropathology 35:1–9

    Article  CAS  PubMed  Google Scholar 

  202. Salay LD, Ishiko N, Huberman AD (2018) A midline thalamic circuit determines reactions to visual threat. Nature 557:7704

    Article  CAS  Google Scholar 

  203. Sánchez-Santed F, De Bruin JPC, Heinsbroek RPW, Verwer RWH (1997) Spatial delayed alternation of rats in a t-maze: effects of neurotoxic lesions of the medial prefrontal cortex and of t-maze rotations. Behav Brain Res 84:73–79

    Article  PubMed  Google Scholar 

  204. Santana N, Troyano-Rodriguez E, Mengod G, Celada P, Artigas F (2011) Activation of thalamocortical networks by the N-methyl-D-aspartate receptor antagonist phencyclidine: reversal by clozapine. Biol Psychiatry 69:918–927

    Article  CAS  PubMed  Google Scholar 

  205. Sapiurka M, Squire LR, Clark RE (2016) Distinct roles of hippocampus and medial prefrontal cortex in spatial and nonspatial memory. Hippocampus 26:1515–1524

    Article  PubMed  PubMed Central  Google Scholar 

  206. Schiff N, Giacino J, Kalmar K, Victor J, Baker K, Gerber M, Fritz B, Eisenberg B, O’Connor J, Kobylarz E, Farris S, Machado A, McCagg C, Plum F, Fins J, Rezai A (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–603

    Article  CAS  PubMed  Google Scholar 

  207. Schiff ND (2008) Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci 1129:105–118

    Article  PubMed  Google Scholar 

  208. Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci 10:885–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Schreiber ME, Athanason A, Rojas AKP, Viena TD, Linley SB, Allen TA, Vertes RP (2018) The effect of inactivation of the ventral hippocampus (vHF) on spatial working memory in the rat. Program No. 082.09. Society for Neuroscience Meeting, San Diego

    Google Scholar 

  210. Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242

    Article  CAS  PubMed  Google Scholar 

  211. Shin JD, Jadhav SP (2016) Multiple modes of hippocampal–prefrontal interactions in memory-guided behavior. Curr Opin Neurobiol 40:161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 1071:67–79

    Article  PubMed  Google Scholar 

  213. Shirvalkar P, Seth M, Schiff ND, Herrera DG (2006) Cognitive enhancement with central thalamic electrical stimulation. Proc Natl Acad Sci U S A 103:17007–17012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Siapas AG, Lubenov EV, Wilson MA (2005) Prefrontal phase locking to hippocampal theta oscillations. Neuron 46:141–151

    Article  CAS  PubMed  Google Scholar 

  215. Sigurdsson T, Duvarci S (2016) Hippocampal-prefrontal interactions in cognition, behavior and psychiatric disease. Front Syst Neurosci 9:1–18

    Article  CAS  Google Scholar 

  216. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA (2010) Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464:763–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Skåtun KC, Kaufmann T, Brandt CL, Doan NT, Alnæs D, Tønnesen S, Biele G, Vaskinn A, Melle I, Agartz I, Andreassen OA (2018) Thalamo-cortical functional connectivity in schizophrenia and bipolar disorder. Brain Imaging Behav 12:640–652

    Article  PubMed  Google Scholar 

  218. Sloan DM, Zhang DX, Bertram EH (2011) Excitatory amplification through divergent-convergent circuits: the role of the midline thalamus in limbic seizures. Neurobiol Dis 43:435–445

    Article  PubMed  PubMed Central  Google Scholar 

  219. Sloan DM, Zhang DX, Bertram EH (2011) Increased GABAergic inhibition in the midline thalamus affects signaling and seizure spread in the hippocampus-prefrontal cortex pathway. Epilepsia 52:523–530

    Article  PubMed  PubMed Central  Google Scholar 

  220. Sotres-Bayon F, Bush DEA, LeDoux JE (2004) Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. Learn Mem 11:525–535

    Article  PubMed  Google Scholar 

  221. Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82:797–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Steiner AP, Redish AD (2012) The road not taken: neural correlates of decision making in orbitofrontal cortex. Front Neurosci 6:1–21

    Article  Google Scholar 

  223. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the slee** and aroused brain. Science 262:679–685

    Article  CAS  PubMed  Google Scholar 

  224. Steullet P (2020) Thalamus-related anomalies as candidate mechanism-based biomarkers for psychosis. Schizophr Res 226:147–157

    Article  PubMed  Google Scholar 

  225. Su HS, Bentivoglio M (1990) Thalamic midline cell populations projecting to the nucleus accumbens, amygdala, and hippocampus in the rat. J Comp Neurol 297:582–593

    Article  CAS  PubMed  Google Scholar 

  226. Sul JH, Kim H, Huh N, Lee D, Jung MW (2010) Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron 66:449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Swanson LW (1981) A direct projection from Ammon’s horn to prefrontal cortex in the rat. Brain Res 217:150–154

    Article  CAS  PubMed  Google Scholar 

  228. Tait D, Chase E, Brown V (2014) Attentional set-shifting in rodents: a review of behavioural methods and pharmacological results. Curr Pharm Des 20:5046–5059

    Article  CAS  PubMed  Google Scholar 

  229. Tait DS, Bowman EM, Neuwirth LS, Brown VJ (2018) Assessment of intradimensional/extradimensional attentional set-shifting in rats. Neurosci Biobehav Rev 89:72–84

    Article  PubMed  Google Scholar 

  230. Tseng KY, Chambers RA, Lipska BK (2009) The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 204:295–305

    Article  PubMed  Google Scholar 

  231. Väisänen J, Ihalainen J, Tanila H, Castrén E (2004) Effects of NMDA-receptor antagonist treatment on c-fos expression in rat brain areas implicated in schizophrenia. Cell Mol Neurobiol 24:769–780

    Article  PubMed  CAS  Google Scholar 

  232. Van Der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 39:107–140

    Article  PubMed  Google Scholar 

  233. Varela C, Kumar S, Yang JY, Wilson MA (2014) Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct Funct 219:911–929

    Article  CAS  PubMed  Google Scholar 

  234. Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313:643–668

    Article  CAS  PubMed  Google Scholar 

  235. Vertes RP (1992) PHA-L analysis of projections from the supramammillary nucleus in the rat. J Comp Neurol 326:595–622

    Article  CAS  PubMed  Google Scholar 

  236. Vertes RP (2002) Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J Comp Neurol 442:163–187

    Article  PubMed  Google Scholar 

  237. Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58

    Article  CAS  PubMed  Google Scholar 

  238. Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20

    Article  CAS  PubMed  Google Scholar 

  239. Vertes RP (2015) Major diencephalic inputs to the hippocampus: supramammillary nucleus and nucleus reuniens. Circuitry and function. Prog Brain Res 219:121–144

    Article  PubMed  PubMed Central  Google Scholar 

  240. Vertes RP, Crane AM, Colom LV, Bland BH (1995) Ascending projections of the posterior nucleus of the hypothalamus: PHAL analysis in the rat. J Comp Neurol 359:90–116

    Article  CAS  PubMed  Google Scholar 

  241. Vertes RP, Hoover WB (2008) Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol 508:212–237

    Article  PubMed  Google Scholar 

  242. Vertes RP, Hoover WB, DoValle AC, Sherman A, Rodriguez JJ (2006) Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768–796

    Article  PubMed  Google Scholar 

  243. Vertes RP, Hoover WB, Szigeti-Buck K, Leranth C (2007) Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res Bull 71:601–609

    Article  PubMed  PubMed Central  Google Scholar 

  244. Vertes RP, Linley SB, Groenewegen HJ, Witter MP (2015) Thalamus. In: Paxinos G (ed) The rat nervous system, 4th edn. Elsevier Academic Press, San Diego, CA, pp 335–390

    Chapter  Google Scholar 

  245. Vertes RP, Linley SB, Hoover WB (2015) Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev 54:89–107

    Article  PubMed  PubMed Central  Google Scholar 

  246. Vetere G, Kenney JW, Tran LM, **a F, Steadman PE, Parkinson J, Josselyn SA, Frankland PW (2017) Chemogenetic interrogation of a brain-wide fear memory network in mice. Neuron 94:363–374

    Article  CAS  PubMed  Google Scholar 

  247. Viana Di Prisco G, Vertes RP (2006) Excitatory actions of the ventral midline thalamus (rhomboid/reuniens) on the medial prefrontal cortex in the rat. Synapse 60:45–55

    Article  CAS  Google Scholar 

  248. Viena TD, Linley SB, Vertes RP (2021) Discharge characteristics of neurons of nucleus reuniens across sleep-wake states in the behaving rat. Behav Brain Res 410:113325

    Article  PubMed  PubMed Central  Google Scholar 

  249. Viena TD, Linley SB, Vertes RP (2018) Inactivation of nucleus reuniens impairs spatial working memory and behavioral flexibility in the rat. Hippocampus 28:297–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Vukadinovic Z (2014) NMDA receptor hypofunction and the thalamus in schizophrenia. Physiol Behav 131:156–159

    Article  CAS  PubMed  Google Scholar 

  251. Wang GW, Cai JX (2006) Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats. Behav Brain Res 175:329–336

    Article  PubMed  Google Scholar 

  252. Welsh RC, Chen AC, Taylor SF (2010) Low-frequency bold fluctuations demonstrate altered thalamocortical connectivity in schizophrenia. Schizophr Bull 36:713–722

    Article  PubMed  Google Scholar 

  253. Weyand TG, Boudreaux M, Guido W (2017) Burst and tonic response modes in thalamic neurons during sleep and wakefulness. J Neurophysiol 85:1107–1118

    Article  Google Scholar 

  254. Wheeler AL, Teixeira CM, Wang AH, **ong X, Kovacevic N, Lerch JP, McIntosh AR, Parkinson J, Frankland PW (2013) Identification of a functional connectome for long-term fear memory in mice. PLoS Comput Biol 9:1

    Article  CAS  Google Scholar 

  255. Whishaw IQ, Tomie JA (1997) Perseveration on place reversals in spatial swimming pool tasks: further evidence for place learning in hippocampal rats. Hippocampus 7:361–370

    Article  CAS  PubMed  Google Scholar 

  256. Wicker E, Forcelli PA (2016) Chemogenetic silencing of the midline and intralaminar thalamus blocks amygdala-kindled seizures. Exp Neurol 283:404–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Wikenheiser AM, Schoenbaum G (2016) Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex. Nat Rev Neurosci 17(8):513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Witter MP, Ostendorf RH, Groenewegen HJ (1990) Heterogeneity in the dorsal subiculum of the rat. Distinct neuronal zones project to different cortical and subcortical targets. Eur J Neurosci 2:718–725

    Article  PubMed  Google Scholar 

  259. Woodward ND, Heckers S (2015) Brain structure in neuropsychologically defined subgroups of schizophrenia and psychotic bipolar disorder. Schizophr Bull 41:1349–1359

    Article  PubMed  PubMed Central  Google Scholar 

  260. Woodward ND, Heckers S (2016) Map** thalamocortical functional connectivity in chronic and early stages of psychotic disorders. Biol Psychiatry 79:1016–1025

    Article  PubMed  Google Scholar 

  261. Woodward ND, Karbasforoushan H, Heckers S (2012) Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatry 169:1092–1099

    Article  PubMed  Google Scholar 

  262. Wouterlood FG (1991) Innervation of entorhinal principal cells by neurons of the nucleus reuniens thalami. Anterograde PHA-L tracing combined with retrograde fluorescent tracing and intracellular injection with lucifer yellow in the rat. Eur J Neurosci 3:641–647

    Article  PubMed  Google Scholar 

  263. Wouterlood FG, Aliane V, Boekel AJ, Hur EE, Zaborszky L, Barroso-Chinea P, Härtig W, Lanciego JL, Witter MP (2008) Origin of calretinin-containing, vesicular glutamate transporter 2-coexpressing fiber terminals in the entorhinal cortex of the rat. J Comp Neurol 506:359–370

    Article  CAS  PubMed  Google Scholar 

  264. Wouterlood FG, Saldana E, Witter MP (1990) Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 296:179–203

    Article  CAS  PubMed  Google Scholar 

  265. Xu W, Morishita W, Buckmaster PS, Pang ZP, Malenka RC, Südhof TC (2012) Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous synaptic transmission. Neuron 73:990–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Xu W, Südhof TC (2013) A neural circuit for memory specificity and generalization. Science 339:1290–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Yoon T, Okada J, Jung MW, Kim JJ (2008) Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learn Mem 15:97–105

    Article  PubMed  PubMed Central  Google Scholar 

  268. Young JJ, Shapiro ML (2011) Dynamic coding of goal-directed paths by orbital prefrontal cortex. J Neurosci 31:5989–6000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Young JJ, Shapiro ML (2011) The orbitofrontal cortex and response selection. Ann N Y Acad Sci 1239:25–32

    Article  PubMed  PubMed Central  Google Scholar 

  270. Zhang DX, Bertram EH (2002) Midline thalamic region: widespread excitatory input to the entorhinal cortex and amygdala. J Neurosci 22:3277–3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Zhang XH, Liu SS, Yi F, Zhuo M, Li BM (2013) Delay-dependent impairment of spatial working memory with inhibition of NR2B-containing NMDA receptors in hippocampal CA1 region of rats. Mol Brain 6:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Zhang Y, Behrens MM, Lisman JE (2008) Prolonged exposure to NMDAR antagonist suppresses inhibitory synaptic transmission in prefrontal cortex. J Neurophysiol 100:959–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Zhang Y, Llinas RR, Lisman JE (2009) Inhibition of NMDARs in the nucleus reticularis of the thalamus produces delta frequency bursting. Front Neural Circuits 3:1–9

    CAS  Google Scholar 

  274. Zhang Y, Yoshida T, Katz DB, Lisman JE (2012) NMDAR antagonist action in thalamus imposes delta oscillations on the hippocampus. J Neurophysiol 107:3181–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Zhu H, Roth BL (2014) Silencing synapses with DREADDs. Neuron 82:723–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Zimmerman EC, Grace AA (2016) The nucleus reuniens of the midline thalamus gates prefrontal-hippocampal modulation of ventral tegmental area dopamine neuron activity. J Neurosci 36:8977–8984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Zimmerman EC, Grace AA (2018) Prefrontal cortex modulates firing pattern in the nucleus reuniens of the midline thalamus via distinct corticothalamic pathways. Eur J Neurosci 48:3255–3272

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant, NS108259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Vertes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vertes, R.P., Linley, S.B., Viena, T.D. (2022). Nucleus Reuniens: Circuitry, Function, and Dysfunction. In: Vertes, R.P., Allen, T. (eds) Electrophysiological Recording Techniques. Neuromethods, vol 192. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2631-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2631-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2630-6

  • Online ISBN: 978-1-0716-2631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation