High-Density Electroencephalography in Freely Moving Mice

  • Protocol
  • First Online:
Electrophysiological Recording Techniques

Part of the book series: Neuromethods ((NM,volume 192))

  • 573 Accesses

Abstract

Electroencephalography (EEG), an electrophysiological monitoring method to record the electrical activity of the brain, has been one of the most important noninvasive brain imaging tools in psychiatry, but surprisingly little is known about how the neural correlates of various EEG features are linked to cognition. Recent advances in neuroscience and related technologies make this an ideal time for new discoveries about the origin and significance of the contents of EEG. In particular, understanding the molecular and cellular mechanisms underlying diverse EEG features has been facilitated using mouse models under genetic, pharmacological, or optogenetic manipulations. A core challenge in mouse EEG was to obtain topographical neuroimaging that can be compared to human EEG. To overcome this challenge, we have developed a high-density EEG using a polyimide-based microarray that fits to the mouse skull and can be applied to various studies with a high spatiotemporal accuracy in free behavioral states. The benefits of mouse high-density EEG are not only that it provides cross-species neuroimaging data comparable to human EEG but also that it helps in dissecting enigmatic brain activity by probing the neural substrates of cognition when combined with optogenetics. The aim of this chapter is to introduce the methodological aspects of high-density EEG in mice. We explain the electrodes, surgery, recording, and analysis procedures and present applications in studying the origin of EEG signals. In addition, we point to potential areas where this technique will provide mechanical insight into circuit dysfunction in major psychiatric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen MX (2017) Where does EEG come from and what does it mean? Trends Neurosci 40(4):208–218. https://doi.org/10.1016/j.tins.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  2. Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G (1995) Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15(1 Pt 1):47–60

    Article  CAS  Google Scholar 

  3. Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225. https://doi.org/10.1146/annurev-neuro-062111-150444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O'Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3(3):317–330. https://doi.org/10.1002/hipo.450030307

    Article  CAS  PubMed  Google Scholar 

  5. Tort AB, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel AM, Kopell NJ (2008) Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci U S A 105(51):20517–20522. https://doi.org/10.1073/pnas.0810524105

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singer W (2013) Cortical dynamics revisited. Trends Cogn Sci 17(12):616–626. https://doi.org/10.1016/j.tics.2013.09.006

    Article  PubMed  Google Scholar 

  7. Choi JH, Koch KP, Poppendieck W, Lee M, Shin HS (2010) High resolution electroencephalography in freely moving mice. J Neurophysiol 104(3):1825–1834. https://doi.org/10.1152/jn.00188.2010

    Article  PubMed  Google Scholar 

  8. Lee M, Kim D, Shin HS, Sung HG, Choi JH (2011) High-density EEG recordings of the freely moving mice using polyimide-based microelectrode. J Vis Exp (47):2562. https://doi.org/10.3791/2562

  9. Buzsaki G, Stark E, Berenyi A, Khodagholy D, Kipke DR, Yoon E, Wise KD (2015) Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 86(1):92–105. https://doi.org/10.1016/j.neuron.2015.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Richardson RR Jr, Miller JA, Reichert WM (1993) Polyimides as biomaterials: preliminary biocompatibility testing. Biomaterials 14(8):627–635

    Article  CAS  Google Scholar 

  11. Viventi J, Kim DH, Vigeland L, Frechette ES, Blanco JA, Kim YS, Avrin AE, Tiruvadi VR, Hwang SW, Vanleer AC, Wulsin DF, Davis K, Gelber CE, Palmer L, Van der Spiegel J, Wu J, ** brain activity in vivo. Nat Neurosci 14(12):1599–1605. https://doi.org/10.1038/nn.2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hwang E, Kim S, Han K, Choi JH (2012) Characterization of phase transition in the thalamocortical system during anesthesia-induced loss of consciousness. PLoS One 7(12):e50580. https://doi.org/10.1371/journal.pone.0050580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159

    Article  CAS  Google Scholar 

  14. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  15. Ma Y, Smith D, Hof PR, Foerster B, Hamilton S, Blackband SJ, Yu M, Benveniste H (2008) In vivo 3D digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Front Neuroanat 2:1. https://doi.org/10.3389/neuro.05.001.2008

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pinault D, O'Brien TJ (2005) Cellular and network mechanisms of genetically-determined absence seizures. Thalamus Relat Syst 3(3):181–203. https://doi.org/10.1017/S1472928807000209

    Article  PubMed  PubMed Central  Google Scholar 

  17. Blumenfeld H (2005) Consciousness and epilepsy: why are patients with absence seizures absent? Prog Brain Res 150:271–286. https://doi.org/10.1016/S0079-6123(05)50020-7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schomer DL, da Silva FL (2011) Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  19. Pinault D, Leresche N, Charpier S, Deniau JM, Marescaux C, Vergnes M, Crunelli V (1998) Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy. J Physiol 509(Pt 2):449–456

    Article  CAS  Google Scholar 

  20. Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116(10):2266–2301. https://doi.org/10.1016/j.clinph.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  21. Wong CH, Siah KW, Lo AW (2018) Estimation of clinical trial success rates and related parameters. Biostatistics. https://doi.org/10.1093/biostatistics/kxx069

  22. Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci U S A 78(4):2643–2647

    Article  CAS  Google Scholar 

  23. Conti G, Santarelli R, Grassi C, Ottaviani F, Azzena GB (1999) Auditory steady-state responses to click trains from the rat temporal cortex. Clin Neurophysiol 110(1):62–70

    Article  CAS  Google Scholar 

  24. Kwon JS, O'Donnell BF, Wallenstein GV, Greene RW, Hirayasu Y, Nestor PG, Hasselmo ME, Potts GF, Shenton ME, McCarley RW (1999) Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 56(11):1001–1005

    Article  CAS  Google Scholar 

  25. Spencer KM, Salisbury DF, Shenton ME, McCarley RW (2008) Gamma-band auditory steady-state responses are impaired in first episode psychosis. Biol Psychiatry 64(5):369–375. https://doi.org/10.1016/j.biopsych.2008.02.021

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thune H, Recasens M, Uhlhaas PJ (2016) The 40-Hz auditory steady-state response in patients with schizophrenia: a meta-analysis. JAMA Psychiat 73(11):1145–1153. https://doi.org/10.1001/jamapsychiatry.2016.2619

    Article  Google Scholar 

  27. Schizophrenia Working Group of the Psychiatric Genomics C (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427. https://doi.org/10.1038/nature13595

    Article  CAS  Google Scholar 

  28. van Os J, Rutten BP, Poulton R (2008) Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull 34(6):1066–1082. https://doi.org/10.1093/schbul/sbn117

    Article  PubMed  PubMed Central  Google Scholar 

  29. Geyer MA, McIlwain KL, Paylor R (2002) Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry 7(10):1039–1053. https://doi.org/10.1038/sj.mp.4001159

    Article  CAS  PubMed  Google Scholar 

  30. Powell CM, Miyakawa T (2006) Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatry 59(12):1198–1207. https://doi.org/10.1016/j.biopsych.2006.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilson CA, Koenig JI (2014) Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. Eur Neuropsychopharmacol 24(5):759–773. https://doi.org/10.1016/j.euroneuro.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  32. Brenner CA, Krishnan GP, Vohs JL, Ahn WY, Hetrick WP, Morzorati SL, O'Donnell BF (2009) Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Schizophr Bull 35(6):1065–1077. https://doi.org/10.1093/schbul/sbp091

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702. https://doi.org/10.1038/nature07991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–667. https://doi.org/10.1038/nature08002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shahriari Y, Krusienski D, Dadi YS, Seo M, Shin HS, Choi JH (2016) Impaired auditory evoked potentials and oscillations in frontal and auditory cortex of a schizophrenia mouse model. World J Biol Psychiatry 17(6):439–448. https://doi.org/10.3109/15622975.2015.1112036

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jee Hyun Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Choi, J.H., Hwang, E. (2022). High-Density Electroencephalography in Freely Moving Mice. In: Vertes, R.P., Allen, T. (eds) Electrophysiological Recording Techniques. Neuromethods, vol 192. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2631-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2631-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2630-6

  • Online ISBN: 978-1-0716-2631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation