Antibody Affinity Maturation Using Computational Methods: From an Initial Hit to Small-Scale Expression of Optimized Binders

  • Protocol
  • First Online:
Computer-Aided Antibody Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2552))

Abstract

Nanobodies (VHHs) are engineered fragments of the camelid single-chain immunoglobulins. The VHH domain contains the highly variable segments responsible for antigen recognition. VHHs can be easily produced as recombinant proteins. Their small size is a good advantage for in silico approaches. Computer methods represent a valuable strategy for the optimization and improvement of their binding affinity. They also allow for epitope selection offering the possibility to design new VHHs for regions of a target protein that are not naturally immunogenic. Here we present an in silico mutagenic protocol developed to improve the binding affinity of nanobodies together with the first step of their in vitro production. The method, already proven successful in improving the low Kd of a nanobody hit obtained by panning, can be employed for the ex novo design of antibody fragments against selected protein target epitopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Melarkode Vattekatte A, Shinada NK, Narwani TJ et al (2020) Discrete analysis of camelid variable domains: sequences, structures, and in-silico structure prediction. PeerJ 8:e8408. https://doi.org/10.7717/peerj.8408

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mitchell LS, Colwell LJ (2018) Comparative analysis of nanobody sequence and structure data. Proteins Struct Funct Bioinforma 86:697–706. https://doi.org/10.1002/prot.25497

    Article  CAS  Google Scholar 

  3. Zavrtanik U, Lukan J, Loris R et al (2018) Structural basis of epitope recognition by heavy-chain camelid antibodies. J Mol Biol 430:4369–4386. https://doi.org/10.1016/j.jmb.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  4. Arbabi-Ghahroudi M (2017) Camelid single-domain antibodies: historical perspective and future outlook. Front Immunol 8:1–8. https://doi.org/10.3389/fimmu.2017.01589

    Article  CAS  Google Scholar 

  5. Wang Y, Fan Z, Shao L et al (2016) Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. Int J Nanomedicine 11:3287–3303. https://doi.org/10.2147/IJN.S107194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Vlieger D, Ballegeer M, Rossey I et al (2018) Single-domain antibodies and their formatting to combat viral infections. Antibodies 8:1. https://doi.org/10.3390/antib8010001

    Article  CAS  PubMed Central  Google Scholar 

  7. Soler MA, Fortuna S, De Marco A, Laio A (2018) Binding affinity prediction of nanobody-protein complexes by scoring of molecular dynamics trajectories. Phys Chem Chem Phys 20:3438–3444. https://doi.org/10.1039/c7cp08116b

    Article  CAS  PubMed  Google Scholar 

  8. Kuroda D, Tsumoto K (2020) Engineering stability, viscosity, and immunogenicity of antibodies by computational design. J Pharm Sci 109:1631–1651. https://doi.org/10.1016/j.xphs.2020.01.011

    Article  CAS  PubMed  Google Scholar 

  9. Guilliams T, El-Turk F, Buell AK et al (2013) Nanobodies raised against monomeric α-synuclein distinguish between fibrils at different maturation stages. J Mol Biol 425:2397–2411. https://doi.org/10.1016/j.jmb.2013.01.040

    Article  CAS  PubMed  Google Scholar 

  10. Cheng X, Wang J, Kang G et al (2019) Homology modeling-based in silico affinity maturation improves the affinity of a nanobody. Int J Mol Sci 20(17):4187

    Google Scholar 

  11. Soler MA, Medagli B, Semrau MS et al (2019) A consensus protocol for the: in silico optimisation of antibody fragments. Chem Commun 55:14043–14046. https://doi.org/10.1039/c9cc06182g

    Article  CAS  Google Scholar 

  12. Gladich I, Rodriguez A, Hong Enriquez RP et al (2015) Designing high-affinity peptides for organic molecules by explicit solvent molecular dynamics. J Phys Chem B 119:12963–12969. https://doi.org/10.1021/acs.jpcb.5b06227

    Article  CAS  PubMed  Google Scholar 

  13. Hong Enriquez RP, Pavan S, Benedetti F et al (2012) Designing short peptides with high affinity for organic molecules: a combined docking, molecular dynamics, and Monte Carlo approach. J Chem Theory Comput 8:1121–1128. https://doi.org/10.1021/ct200873y

    Article  CAS  PubMed  Google Scholar 

  14. Del Carlo M, Capoferri D, Gladich I et al (2016) In silico design of short peptides as sensing elements for phenolic compounds. ACS Sensors 1:279–286. https://doi.org/10.1021/acssensors.5b00225

    Article  CAS  Google Scholar 

  15. Guida F, Battisti A, Gladich I et al (2018) Peptide biosensors for anticancer drugs: design in silico to work in denaturizing environment. Biosens Bioelectron 100:298–303. https://doi.org/10.1016/j.bios.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  16. Soler MA, Rodriguez A, Russo A et al (2017) Computational design of cyclic peptides for the customized oriented immobilization of globular proteins. Phys Chem Chem Phys 19:2740–2748. https://doi.org/10.1039/c6cp07807a

    Article  CAS  PubMed  Google Scholar 

  17. Russo A, Scognamiglio PL, Enriquez RPH et al (2015) In silico generation of peptides by replica exchange monte carlo: docking-based optimization of maltose-binding-protein ligands. PLoS One 10:1–16. https://doi.org/10.1371/journal.pone.0133571

    Article  CAS  Google Scholar 

  18. Soler MA, Fortuna S, Scoles G (2015) Computational design of peptides as probes for the recognition of protein biomarkers. Eur Biophys J WITH Biophys Lett 44:S149

    Google Scholar 

  19. Ochoa R, Soler MA, Laio A, Cossio P (2020) PARCE: protocol for amino acid refinement through computational evolution. Comput Phys Commun 260:107716

    Google Scholar 

  20. Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. https://doi.org/10.1093/bioinformatics/btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krivov GG, Shapovalov MV, Dunbrack RL Jr (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77:778–795. https://doi.org/10.1002/prot.22488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vreven T, Hwang H, Weng Z (2011) Integrating atom-based and residue-based scoring functions for protein-protein docking. Protein Sci 20:1576–1586. https://doi.org/10.1002/pro.687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins Struct Funct Bioinforma 69:139–159. https://doi.org/10.1002/prot.21495

    Article  CAS  Google Scholar 

  24. Sarti E, Granata D, Seno F et al (2015) Native fold and docking pose discrimination by the same residue-based scoring function. Proteins Struct Funct Bioinforma 83(4):621–630. https://doi.org/10.1002/prot.24764

    Article  CAS  Google Scholar 

  25. Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein−protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737. https://doi.org/10.1021/ja026939x

    Article  CAS  PubMed  Google Scholar 

  26. Fogolari F, Corazza A, Yarra V et al (2012) Bluues: a program for the analysis of the electrostatic properties of proteins based on generalized Born radii. BMC Bioinformatics 13:1–16. https://doi.org/10.1186/1471-2105-13-S4-S18

    Article  CAS  Google Scholar 

  27. Veggiani G, Giabbai B, Semrau MS et al (2020) Comparative analysis of fusion tags used to functionalize recombinant antibodies. Protein Expr Purif 166:105505. https://doi.org/10.1016/j.pep.2019.105505

    Article  CAS  PubMed  Google Scholar 

  28. Fisher RD, Ultsch M, Lingel A et al (2010) Structure of the complex between HER2 and an antibody paratope formed by side chains from tryptophan and serine. J Mol Biol 402:217–229. https://doi.org/10.1016/j.jmb.2010.07.027

    Article  CAS  PubMed  Google Scholar 

  29. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. https://doi.org/10.1002/elps.1150181505

    Article  CAS  PubMed  Google Scholar 

  30. Van Zundert GCP, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725. https://doi.org/10.1016/j.jmb.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  31. Cho H-S, Mason K, Ramyar KX et al (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421:756–760. https://doi.org/10.1038/nature01392

    Article  CAS  PubMed  Google Scholar 

  32. Soler MA, De Marco A, Fortuna S (2016) Molecular dynamics simulations and docking enable to explore the biophysical factors controlling the yields of engineered nanobodies. Sci Rep 6:1–11. https://doi.org/10.1038/srep34869

    Article  CAS  Google Scholar 

  33. Daura X, Gademann K, Jaun B et al (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240. https://doi.org/10.1002/(sici)1521-3773(19990115)38:1/2<236::aid-anie236>3.3.co;2-d

    Article  CAS  Google Scholar 

  34. Scarabelli G, Morra G, Colombo G (2010) Predicting interaction sites from the energetics of isolated proteins: a new approach to epitope map**. Biophys J 98:1966–1975. https://doi.org/10.1016/j.bpj.2010.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques 28(1102):1104. https://doi.org/10.2144/00286ir01

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Italian Association for Cancer Research (AIRC) through the grant “My First AIRC grant” Rif.18510 (PI: Fortuna) and the CINECA Awards N. HP10C70TG1, 2018, for the availability of high performance computing resources and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Barbara Medagli or Sara Fortuna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Medagli, B., Soler, M.A., De Zorzi, R., Fortuna, S. (2023). Antibody Affinity Maturation Using Computational Methods: From an Initial Hit to Small-Scale Expression of Optimized Binders. In: Tsumoto, K., Kuroda, D. (eds) Computer-Aided Antibody Design. Methods in Molecular Biology, vol 2552. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2609-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2609-2_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2608-5

  • Online ISBN: 978-1-0716-2609-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation