Measuring Protein-Protein Interactions of Melatonin Receptors by Bioluminescence Resonance Energy Transfer (BRET)

  • Protocol
  • First Online:
Melatonin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2550))

Abstract

The melatonin receptor subfamily belongs to the G protein-coupled receptor superfamily and consists of three members in mammals, MT1, MT2, and GPR50. These receptors can interact with each other to form homo- and heterodimers that are part of larger molecular complexes composed of G proteins, β-arrestins, and other membrane and cytosolic proteins. BRET (bioluminescence resonance energy transfer) is a versatile technique to follow protein-protein interactions on the nanometer scale, in real time, in living cells, which contributed largely to our understanding of the function of melatonin receptors. In this chapter, we describe our BRET protocols for melatonin receptors, which can also be applied to other GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oishi A, Gbahou F, Jockers R (2021) Melatonin receptors, brain functions, and therapies. Handb Clin Neurol 179:345–356. https://doi.org/10.1016/B978-0-12-819975-6.00022-4

    Article  PubMed  Google Scholar 

  2. Cecon E, Oishi A, Jockers R (2018) Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol 175:3263–3280. https://doi.org/10.1111/bph.13950

    Article  CAS  PubMed  Google Scholar 

  3. Oishi A, Jockers R (2016) Melatonin receptor MT1 and MT2. In: Encyclopedia of signaling molecules, pp 1–6. https://doi.org/10.1007/978-1-4614-6438-9_101751-1

    Chapter  Google Scholar 

  4. Ayoub MA, Couturier C, Lucas-Meunier E et al (2002) Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem 277:21522–21528. https://doi.org/10.1074/jbc.M200729200

    Article  CAS  PubMed  Google Scholar 

  5. Ayoub MA, Levoye A, Delagrange P et al (2004) Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol Pharmacol 66:312–321. https://doi.org/10.1124/mol.104.000398

    Article  CAS  PubMed  Google Scholar 

  6. Levoye A, Dam J, Ayoub MA et al (2006) The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J 25:3012–3023. https://doi.org/10.1038/sj.emboj.7601193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oishi A, Karamitri A, Gerbier R et al (2017) Orphan GPR61, GPR62 and GPR135 receptors and the melatonin MT2 receptor reciprocally modulate their signaling functions. Sci Rep 7:8990. https://doi.org/10.1038/s41598-017-08996-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kamal M, Gbahou F, Guillaume JL et al (2015) Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. J Biol Chem 290:11537–11546. https://doi.org/10.1074/jbc.M114.559542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Levoye A, Dam J, Ayoub MA et al (2006) Do orphan G-protein-coupled receptors have ligand-independent functions? New insights from receptor heterodimers. EMBO Rep 7:1094–1098. https://doi.org/10.1038/sj.embor.7400838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Issad T, Jockers R (2006) Bioluminescence resonance energy transfer to monitor protein-protein interactions. Methods Mol Biol 332:195–209. https://doi.org/10.1385/1-59745-048-0:193

  11. Duquenne M, Folgueira C, Bourouh C et al (2021) Leptin brain entry via a tanycytic LepR-EGFR shuttle controls lipid metabolism and pancreas function. Nat Metab 3:1071–1090. https://doi.org/10.1038/s42255-021-00432-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oishi A, Dam J, Jockers R (2020) beta-Arrestin-2 BRET biosensors detect different beta-Arrestin-2 conformations in interaction with GPCRs. ACS Sensors 5:57–64. https://doi.org/10.1021/acssensors.9b01414

    Article  CAS  PubMed  Google Scholar 

  13. Hall MP, Unch J, Binkowski BF et al (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857. https://doi.org/10.1021/cb3002478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chu J, Oh Y, Sens A et al (2016) A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo. Nat Biotechnol 34:760–767. https://doi.org/10.1038/nbt.3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Namkung Y, Le Gouill C, Lukashova V et al (2016) Monitoring G protein-coupled receptor and beta-arrestin trafficking in live cells using enhanced bystander BRET. Nat Commun 7:12178. https://doi.org/10.1038/ncomms12178

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kobayashi H, Picard LP, Schonegge AM et al (2019) Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells. Nat Protoc 14:1084–1107. https://doi.org/10.1038/s41596-019-0129-7

    Article  CAS  PubMed  Google Scholar 

  17. Jones B, McGlone ER, Fang Z et al (2021) Genetic and biased agonist-mediated reductions in beta-arrestin recruitment prolong cAMP signaling at glucagon family receptors. J Biol Chem 296:100133. https://doi.org/10.1074/jbc.RA120.016334

    Article  CAS  PubMed  Google Scholar 

  18. Lucey M, Ashik T, Marzook A et al (2021) Acylation of the incretin peptide exendin-4 directly impacts GLP-1 receptor signalling and trafficking. Mol Pharmacol 100:319–334. https://doi.org/10.1124/molpharm.121.000270

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the members of the Jockers lab (Institut Cochin, France), the Department of Anatomy (Kyorin University, Japan), and the Yoshimi lab (National Cancer Center Research Institute, Japan) for the kind support. This work was supported by grants from the Vehicle Racing Commemorative Foundation (to A.O.), Daiwa Securities Health Foundation (to A.O.), and from the Fondation Recherche Médicale (Equipe FRM 2019, EQU201903008055), The French National Research Agency (ANR) ANR-19-CE16-0025-01 (Mito-GPCR), ANR-21-CE18-0023-01 (alloGLP1R), Recherches Partenariales et Innovation Biomédicale 2012 “MED-HET-REC-2”, INSERM; CNRS, La Ligue Contre le Cancer N/Ref: RS19/75-127 (to R.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Jockers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oishi, A., Jockers, R. (2022). Measuring Protein-Protein Interactions of Melatonin Receptors by Bioluminescence Resonance Energy Transfer (BRET). In: Jockers, R., Cecon, E. (eds) Melatonin. Methods in Molecular Biology, vol 2550. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2593-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2593-4_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2592-7

  • Online ISBN: 978-1-0716-2593-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation