Genome Editing by CRISPR/Cas9 in Polyploids

  • Protocol
  • First Online:
Polyploidy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2545))

Abstract

CRISPR/Cas system has been widely used for genome editing in the past few years. Even though it has been performed in many polyploid species to date, its efficient accomplishment in these organisms is still a challenge. The presence of multiple homoeologous genes as targets for their editing requires more rigorous work and specific needs to assess successful genome editing. Here, we describe a general stepwise protocol to select target sites, design sgRNAs, indicate vector requirements, and screen CRISPR/Cas9-mediated genome editing in polyploid species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Songstad DD, Petolino JF, Voytas DF, Reichert NA (2017) Genome editing of plants. CRC Crit Rev Plant Sci 36:1–23. https://doi.org/10.1080/07352689.2017.1281663

    Article  Google Scholar 

  2. Zhu H, Li C, Gao C (2020) Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21:661–677. https://doi.org/10.1038/s41580-020-00288-9

    Article  CAS  Google Scholar 

  3. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. https://doi.org/10.1016/j.tibtech.2013.04.004.ZFN

    Article  CAS  Google Scholar 

  4. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143.Multiplex

    Article  CAS  Google Scholar 

  5. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182. https://doi.org/10.1007/s00239-004-0046-3

    Article  CAS  Google Scholar 

  6. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR – A widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186. https://doi.org/10.1038/nrmicro1793

    Article  CAS  Google Scholar 

  7. **ek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (80-) 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  Google Scholar 

  8. Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232. https://doi.org/10.1038/cr.2013.114

    Article  CAS  Google Scholar 

  9. Mao Y, Zhang H, Xu N et al (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011. https://doi.org/10.1093/mp/sst121

    Article  CAS  Google Scholar 

  10. Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:1–12. https://doi.org/10.1093/nar/gkt780

    Article  CAS  Google Scholar 

  11. Woodhouse M, Burkart-Waco D, Comai L (2009) Polyploidy Nat Educ 2:1

    Google Scholar 

  12. Soppa J (2014) Polyploidy in archaea and bacteria: about desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. J Mol Microbiol Biotechnol 24:409–419. https://doi.org/10.1159/000368855

    Article  CAS  Google Scholar 

  13. Baatout S (1999) Molecular basis to understand polyploidy. Hematol Cell Ther 41:169–170. https://doi.org/10.1007/s00282-999-0169-5

    Article  CAS  Google Scholar 

  14. Yin F, Liu W, Chai J et al (2018) CRISPR/Cas9 application for gene copy fate survey of polyploid vertebrates. Front Genet 9:1–7. https://doi.org/10.3389/fgene.2018.00260

    Article  CAS  Google Scholar 

  15. Fang Z, Morrell PL (2016) Polyploidy boosts domestication. Nat Plants 2:1–2. https://doi.org/10.1038/NPLANTS.2016.116

    Article  Google Scholar 

  16. Zaman QU, Li C, Cheng H, Hu Q (2019) Genome editing opens a new era of genetic improvement in polyploid crops. Crop J 7:141–150. https://doi.org/10.1016/j.cj.2018.07.004

    Article  Google Scholar 

  17. Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:684–686. https://doi.org/10.1038/nbt.2652

    Article  CAS  Google Scholar 

  18. Kaur N, Alok A, Shivani et al (2020) CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metab Eng 59:76–86. https://doi.org/10.1016/j.ymben.2020.01.008

    Article  CAS  Google Scholar 

  19. Sun X, Hu Z, Chen R et al (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:1–10. https://doi.org/10.1038/srep10342

    Article  Google Scholar 

  20. Gao J, Wang G, Ma S et al (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110. https://doi.org/10.1007/s11103-014-0263-0

    Article  CAS  Google Scholar 

  21. Andersson M, Turesson H, Nicolia A et al (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128. https://doi.org/10.1007/s00299-016-2062-3

    Article  CAS  Google Scholar 

  22. Li C, Unver T, Zhang B (2017) A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Sci Rep 7:1–10. https://doi.org/10.1038/srep43902

    Article  Google Scholar 

  23. Braatz J, Harloff HJ, Mascher M et al (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174:935–942. https://doi.org/10.1104/pp.17.00426

    Article  CAS  Google Scholar 

  24. Park JJ, Yoo CG, Flanagan A et al (2017) Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release Mike Himmel. Biotechnol Biofuels 10:1–11. https://doi.org/10.1186/s13068-017-0972-0

    Article  CAS  Google Scholar 

  25. Shan S, Mavrodiev EV, Li R et al (2018) Application of CRISPR/Cas9 to Tragopogon (Asteraceae), an evolutionary model for the study of polyploidy. Mol Ecol Resour 18:1427–1443. https://doi.org/10.1111/1755-0998.12935

    Article  CAS  Google Scholar 

  26. Morineau C, Bellec Y, Tellier F et al (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J 15:729–739. https://doi.org/10.1111/pbi.12671

    Article  CAS  Google Scholar 

  27. Martín-Pizarro C, Triviño JC, Posé D (2019) Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9-directed mutagenesis. J Exp Bot 70:949–961. https://doi.org/10.1093/jxb/ery400

    Article  CAS  Google Scholar 

  28. Eid A, Mohan C, Sanchez S et al (2021) Multiallelic, targeted mutagenesis of magnesium chelatase with CRISPR/Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane. Front Genome Ed 3. https://doi.org/10.3389/fgeed.2021.654996

  29. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  Google Scholar 

  30. Moreno-Mateos MA, Vejnar CE, Beaudoin JD et al (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12:982–988. https://doi.org/10.1038/nmeth.3543

    Article  CAS  Google Scholar 

  31. Xu H, **ao T, Chen CH et al (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25:1147–1157. https://doi.org/10.1101/gr.191452.115

    Article  CAS  Google Scholar 

  32. Liu H, Ding Y, Zhou Y et al (2017) CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10:530–532. https://doi.org/10.1016/j.molp.2017.01.003

    Article  CAS  Google Scholar 

  33. Concordet JP, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46:W242–W245. https://doi.org/10.1093/nar/gky354

    Article  CAS  Google Scholar 

  34. Labun K, Montague TG, Krause M et al (2019) CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47:W171–W174. https://doi.org/10.1093/nar/gkz365

    Article  CAS  Google Scholar 

  35. Prykhozhij SV, Rajan V, Gaston D, Berman JN (2015) CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10:1–18. https://doi.org/10.1371/journal.pone.0119372

    Article  CAS  Google Scholar 

  36. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475. https://doi.org/10.1093/bioinformatics/btu048

    Article  CAS  Google Scholar 

  37. Feng C, Su H, Bai H et al (2018) High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J 16:1848–1857. https://doi.org/10.1111/pbi.12920

    Article  CAS  Google Scholar 

  38. Qi X, Dong L, Liu C et al (2018) Systematic identification of endogenous RNA polymerase III promoters for efficient RNA guide-based genome editing technologies in maize. Crop J 6:314–320. https://doi.org/10.1016/j.cj.2018.02.005

    Article  Google Scholar 

  39. Miyagishi M, Taira K (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20:497–500. https://doi.org/10.1038/nbt0502-497

    Article  CAS  Google Scholar 

  40. **a XG, Zhou H, Ding H et al (2003) An enhanced U6 promoter for synthesis of short hairpin RNA. Nucleic Acids Res 31:e100. https://doi.org/10.1093/nar/gng098

    Article  CAS  Google Scholar 

  41. Zhou J, Wang G, Liu Z (2018) Efficient genome editing of wild strawberry genes, vector development and validation. Plant Biotechnol J 16:1868–1877. https://doi.org/10.1111/pbi.12922

    Article  CAS  Google Scholar 

  42. Long L, Guo DD, Gao W et al (2018) Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods 14:1–9. https://doi.org/10.1186/s13007-018-0353-0

    Article  CAS  Google Scholar 

  43. Johansen IE, Liu Y, Jørgensen B et al (2019) High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci Rep 9:1–7. https://doi.org/10.1038/s41598-019-54126-w

    Article  CAS  Google Scholar 

  44. Gil-Humanes J, Wang Y, Liang Z et al (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262. https://doi.org/10.1111/tpj.13446

    Article  CAS  Google Scholar 

  45. Wolabu TW, Cong L, Park J et al (2020) Development of a highly efficient multiplex genome editing system in outcrossing tetraploid alfalfa (Medicago sativa). Front Plant Sci 11:1–9. https://doi.org/10.3389/fpls.2020.01063

    Article  Google Scholar 

  46. Yan L, Wei S, Wu Y et al (2015) High-efficiency genome editing in arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant 8:1820–1823. https://doi.org/10.1016/j.molp.2015.10.004

    Article  CAS  Google Scholar 

  47. Zhang F, LeBlanc C, Irish VF, Jacob Y (2017) Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant Cell Rep 36:1883–1887. https://doi.org/10.1007/s00299-017-2202-4

    Article  CAS  Google Scholar 

  48. Liu W, ** of targeted mutations. Mol Plant 8:1431–1433. https://doi.org/10.1016/j.molp.2015.05.009

    Article  CAS  Google Scholar 

  49. Güell M, Yang L, Church GM (2014) Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics 30:2968–2970. https://doi.org/10.1093/bioinformatics/btu427

    Article  CAS  Google Scholar 

  50. Park J, Lim K, Kim JS, Bae S (2017) Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics 33:286–288. https://doi.org/10.1093/bioinformatics/btw561

    Article  CAS  Google Scholar 

  51. Ledda M, Cobo N, Lorant A, et al (2019) PolyOligo: a bioinformatic platform for identifying target DNA sequences for the development of sub-genome specific DNA markers in polyploid/complex genomes

    Google Scholar 

  52. Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 1–13. https://doi.org/10.1093/molbev/msab120

  53. Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191. https://doi.org/10.1038/nbt.3437

    Article  CAS  Google Scholar 

  54. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:1–10. https://doi.org/10.1186/1746-4811-9-39

    Article  CAS  Google Scholar 

  55. Tycko J, Wainberg M, Marinov GK et al (2019) Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nat Commun 10:1–14. https://doi.org/10.1038/s41467-019-11955-7

    Article  Google Scholar 

Download references

Acknowledgments

CSG was supported by a grant from the Spanish Ministries of Science and Innovation (MICINN, RTI2018-09309-A-I00). CMP was supported by a grant from the European Research Council (ERC-2014-StG 638134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Martín-Pizarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sánchez-Gómez, C., Posé, D., Martín-Pizarro, C. (2023). Genome Editing by CRISPR/Cas9 in Polyploids. In: Van de Peer, Y. (eds) Polyploidy. Methods in Molecular Biology, vol 2545. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2561-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2561-3_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2560-6

  • Online ISBN: 978-1-0716-2561-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation