Transcriptome Data Analysis Using a De Novo Assembly Approach

  • Protocol
  • First Online:
Genomics of Cereal Crops

Abstract

Characterization and profiling of the gene expression data or, more formally, called transcriptome are crucial steps in revealing the involvement of RNA in a variety of biological processes. RNA characteristics have been investigated in a number of researches employing whole transcriptome sequencing (RNA-seq) data in all the major crops. To date, a number of crop genomes have been sequenced, which allows researchers to understand the typical biological mechanism, which may further be utilized to discover and characterise candidate genes responsible. Gene expression profiling, that is, RNA-seq, is a useful tool for identifying and understanding biological processes/mechanisms, such as the coding, decoding, regulation, and expression of genes. A basic RNA-seq process may be divided into two broad categories, that is, reference based and de novo, as per the availability of the reference genome related to the species/crop under consideration. In this chapter, we introduce basic RNA-seq analysis approaches, pipelines and software, focusing particularly on de novo transcriptome assembly and identification of differentially expressed genes (DEGs)/transcripts by using finger millet as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saxena R, Vanga SK, Wang J, Orsat V, Raghavan V (2018) Millets for food security in the context of climate change: a review. Sustainability 10:2228

    Article  Google Scholar 

  2. Avashthi H, Pathak RK, Gaur VS, Singh S, Gupta VK, Ramteke PW et al (2020) Comparative analysis of ROS-scavenging gene families in finger millet, rice, sorghum, and foxtail millet revealed potential targets for antioxidant activity and drought tolerance improvement. Netw Model Anal Health Inform Bioinform 9:1–23

    Article  Google Scholar 

  3. Avashthi H, Pathak RK, Pandey N, Arora S, Mishra AK, Gupta VK et al (2018) Transcriptome-wide identification of genes involved in ascorbate-glutathione cycle (Halliwell-Asada pathway) and related pathway for elucidating its role in antioxidative potential in finger millet (Eleusine coracana (L.)). 3 Biotech 8:1–8

    Article  Google Scholar 

  4. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetics perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  Google Scholar 

  5. Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  Google Scholar 

  6. Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N et al (2012) A comprehensive evaluation of normalization methods for Illumina highthroughput RNA sequencing data analysis. Brief Bioinform 14:671–683

    Article  Google Scholar 

  7. Costa-Silva J, Domingues D, Lopes FM (2017) RNA-Seq differential expression analysis: an extended review and a software tool. PLoS One 12:e0190152

    Article  Google Scholar 

  8. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  Google Scholar 

  9. Seyednasrollah F, Laiho A, Elo LL (2015) Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform 16:59–70

    Article  CAS  Google Scholar 

  10. Kumar A, Gaur VS, Goel A, Gupta AK (2015) De novo assembly and characterization of develo** spikes transcriptome of finger millet (Eleusine coracana): a minor crop having nutraceutical properties. Plant Mol Biol Rep 33:905–922

    Article  CAS  Google Scholar 

  11. Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL (2015) Informatics for RNA sequencing: a web resource for analysis on the cloud. PLoS Comput Biol 11:e1004393

    Article  Google Scholar 

  12. Leinonen R, Sugawara H, Shumway M (2010) International nucleotide sequence database collaboration. The sequence read archive. Nucleic Acids Res 39(suppl_1):D19–D21

    PubMed  PubMed Central  Google Scholar 

  13. Trivedi UH, Cezard T, Bridgett S, Montazam A, Nichols J, Blaxter M et al (2014) Quality control of next-generation sequencing data without a reference. Front Genet 5:111

    Article  Google Scholar 

  14. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al (2011) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644

    Article  CAS  Google Scholar 

  16. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:1–6

    Article  Google Scholar 

  17. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  Google Scholar 

  18. Green MR, Sambrook J (2014) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  19. Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619

    Article  CAS  Google Scholar 

  20. Yang X, Liu D, Liu F, Wu J, Zou J, **ao X et al (2013) HTQC: a fast quality control toolkit for Illumina sequencing data. BMC Bioinform 14:1–4

    Google Scholar 

  21. Lindgreen S (2012) AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res Notes 5:1–7

    Article  Google Scholar 

  22. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  23. Liao X, Li M, Zou Y, Wu FX, Pan Y, Wang J (2019) An efficient trimming algorithm based on multi-feature fusion scoring model for NGS data. IEEE/ACM Trans Comput Biol Bioinform 17:728–738

    Article  Google Scholar 

  24. **e Y, Wu G, Tang J, Luo R, Patterson J, Liu S et al (2014) SOAPdenovo-trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30:1660–1666

    Article  CAS  Google Scholar 

  25. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092

    Article  CAS  Google Scholar 

  26. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD et al (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7:909–912

    Article  CAS  Google Scholar 

  27. Li X, Brock GN, Rouchka EC, Cooper N, Wu D, O’Toole TE et al (2017) A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data. PLoS One 12:e0176185

    Article  Google Scholar 

  28. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Avashthi, H. et al. (2022). Transcriptome Data Analysis Using a De Novo Assembly Approach. In: Wani, S.H., Kumar, A. (eds) Genomics of Cereal Crops. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2533-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2533-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2532-3

  • Online ISBN: 978-1-0716-2533-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation